Stochastic Kuramoto oscillators with discrete phase states

被引:7
|
作者
Jorg, David J. [1 ,2 ]
机构
[1] Univ Cambridge, Theory Condensed Matter Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Wellcome Trust Canc Res UK Gurdon Inst, Tennis Court Rd, Cambridge CB2 1QN, England
基金
英国惠康基金;
关键词
SYNCHRONIZATION; DIFFERENTIATION; NOISE; CYCLE; MODEL;
D O I
10.1103/PhysRevE.96.032201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SYNCHRONIZATION OF DISCRETE TIME KURAMOTO OSCILLATORS WITH DELAYED STATES
    Zhang, Hua
    Xiao, Sisi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (05): : 2399 - 2418
  • [2] SYNCHRONIZATION OF DISCRETE TIME KURAMOTO OSCILLATORS WITH DELAYED STATES
    Zhang, Hua
    Xiao, Sisi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, : 2399 - 2418
  • [3] Stochastic phase-cohesiveness of discrete-time Kuramoto oscillators in a frequency-dependent tree network
    Jafarian, Matin
    Mamduhi, Mohammad H.
    Johansson, Karl H.
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 1987 - 1992
  • [4] EMERGENT COLLECTIVE BEHAVIORS OF STOCHASTIC KURAMOTO OSCILLATORS
    Ha, Seung-Yeal
    Ko, Dongnam
    Min, Chanho
    Zhang, Xiongtao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (03): : 1059 - 1081
  • [5] Formation of phase-locked states in a population of locally interacting Kuramoto oscillators
    Ha, Seung-Yeal
    Li, Zhuchun
    Xue, Xiaoping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (10) : 3053 - 3070
  • [6] Stability of twisted states on lattices of Kuramoto oscillators
    Goebel, Monica
    Mizuhara, Matthew S.
    Stepanoff, Sofia
    CHAOS, 2021, 31 (10)
  • [7] Chimera states in coupled Kuramoto oscillators with inertia
    Olmi, Simona
    CHAOS, 2015, 25 (12)
  • [8] Phase coalescence in a population of heterogeneous Kuramoto oscillators
    Phogat, Richa
    Ray, Arnob
    Parmananda, P.
    Ghosh, Dibakar
    CHAOS, 2021, 31 (04)
  • [9] Stochastic Kuramoto oscillators with inertia and higher-order interactions
    Rajwani, Priyanka
    Jalan, Sarika
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [10] PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL
    Maistrenko, Volodymyr
    Vasylenko, Anna
    Maistrenko, Yuri
    Mosekilde, Erik
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (06): : 1811 - 1823