Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial

被引:64
作者
Liu, Tingting [1 ]
Wang, Huaixing [1 ]
Liu, Yong [1 ]
Xiao, Longsheng [1 ]
Zhou, Chaobiao [2 ]
Liu, Yuebo [3 ]
Xu, Chen [4 ]
Xiao, Shuyuan [2 ,5 ]
机构
[1] Hubei Univ Educ, Sch Phys & Elect Informat, Lab Millimeter Wave & Terahertz Technol, Wuhan 430205, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[3] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[4] New Mexico State Univ, Dept Phys, Las Cruces, NM 88001 USA
[5] Nanchang Univ, Inst Adv Study, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
terahertz; metamaterial; graphene; electromagnetically induced transparency; PLASMON-INDUCED TRANSPARENCY; FANO-RESONANT METASURFACES; HIGH-EFFICIENCY; ANALOG; ABSORPTION; LAYERS;
D O I
10.1088/1361-6463/aadb7f
中图分类号
O59 [应用物理学];
学科分类号
摘要
We theoretically investigate the interaction between the conductive graphene layer with the dual-spectral electromagnetically induced transparency (EIT) metamaterial and achieve independent amplitude modulation of the transmission peaks in the terahertz (THz) regime. The dual-spectral FIT resonance results from the strong near field coupling effects between the bright Cm wire resonator in the middle and two dark double-split ring resonators on the two sides. By integrating monolayer graphene under the dark mode resonators, the two transmission peaks of the EIT resonance can exhibit independent amplitude modulation via the shifting of the Fermi level of the corresponding graphene layer. The physical mechanism of the modulation can be attributed to the variation of damping factors of the dark mode resonators arising from the tunable conductivity of graphene. This work shows great prospects in designing multiple-spectral THz functional devices with highly flexible tunability and implies promising applications in multi-channel selective switching, modulation and slow light.
引用
收藏
页数:8
相关论文
共 56 条
[11]   Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials [J].
Han, Song ;
Cong, Lonqing ;
Gao, Fei ;
Singh, Ranjan ;
Yang, Helin .
ANNALEN DER PHYSIK, 2016, 528 (05) :352-357
[12]   Electromagnetically induced transparency [J].
Harris, SE .
PHYSICS TODAY, 1997, 50 (07) :36-42
[13]   Graphene patterns supported terahertz tunable plasmon induced transparency [J].
He, Xiaoyong ;
Liu, Feng ;
Lin, Fangting ;
Shi, Wangzhou .
OPTICS EXPRESS, 2018, 26 (08) :9931-9944
[14]   Terahertz tunable graphene Fano resonance [J].
He, Xiaoyong ;
Lin, Fangting ;
Liu, Feng ;
Shi, Wangzhou .
NANOTECHNOLOGY, 2016, 27 (48)
[15]   A further comparison of graphene and thin metal layers for plasmonics [J].
He, Xiaoyong ;
Gao, Pingqi ;
Shi, Wangzhou .
NANOSCALE, 2016, 8 (19) :10388-10397
[16]   Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial [J].
He, Xunjun ;
Yang, Xingyu ;
Lu, Guangjun ;
Yang, Wenlong ;
Wu, Fengmin ;
Yu, Zhigang ;
Jiang, Jiuxing .
CARBON, 2017, 123 :668-675
[17]   Tailoring dual-band electromagnetically induced transparency in planar metamaterials [J].
Hu, Sen ;
Yang, Helin ;
Han, Song ;
Huang, Xiaojun ;
Xiao, Boxun .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (04)
[18]   Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling [J].
Jiang, Xiaoyun ;
Wang, Tao ;
Xiao, Shuyuan ;
Yan, Xicheng ;
Cheng, Le ;
Zhong, Qingfang .
NANOTECHNOLOGY, 2018, 29 (33)
[19]   Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance [J].
Jiang, Xiaoyun ;
Wang, Tao ;
Xiao, Shuyuan ;
Yan, Xicheng ;
Cheng, Le .
OPTICS EXPRESS, 2017, 25 (22) :27028-27036
[20]   Group-Velocity-Controlled and Gate-Tunable Directional Excitation of Polaritons in Graphene-Boron Nitride Heterostructures [J].
Jiang, Yuyu ;
Lin, Xiao ;
Low, Tony ;
Zhang, Baile ;
Chen, Hongsheng .
LASER & PHOTONICS REVIEWS, 2018, 12 (05)