Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients

被引:129
作者
不详
机构
关键词
Stochastic differential equation; rare event; strong convergence; numerical approximation; local Lipschitz condition; Lyapunov condition; BALANCED IMPLICIT METHODS; STRONG-CONVERGENCE RATES; PHASE-TRANSITIONS; BACKWARD EULER; SCHEME; TIME; OSCILLATIONS; INTEGRATION; STABILITY; MODELS;
D O I
10.1090/memo/1112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many stochastic differential equations (SDEs) in the literature have a super-linearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, we establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, we illustrate our results for several SDEs from finance, physics, biology and chemistry.
引用
收藏
页码:1 / +
页数:100
相关论文
共 84 条
  • [11] A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES
    COX, JC
    INGERSOLL, JE
    ROSS, SA
    [J]. ECONOMETRICA, 1985, 53 (02) : 385 - 407
  • [12] Cox S. G., 2013, NUMERISCHE IN PRESS
  • [13] Infinite-Dimensional Quadrature and Approximation of Distributions
    Creutzig, Jakob
    Dereich, Steffen
    Mueller-Gronbach, Thomas
    Ritter, Klaus
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (04) : 391 - 429
  • [14] Dawson D. A., 1980, GALERKIN APPROXIMATI, P317
  • [15] An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process
    Dereich, Steffen
    Neuenkirch, Andreas
    Szpruch, Lukasz
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2140): : 1105 - 1115
  • [16] Extinction in neutrally stable stochastic Lotka-Volterra models
    Dobrinevski, Alexander
    Frey, Erwin
    [J]. PHYSICAL REVIEW E, 2012, 85 (05):
  • [17] SEMIGROUP SPLITTING AND CUBATURE APPROXIMATIONS FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS
    Doersek, Philipp
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 729 - 746
  • [18] Gareth O, 1996, BERNOULLI, V2, P341, DOI 10.2307/3318418
  • [19] Multilevel Monte Carlo path simulation
    Giles, Michael B.
    [J]. OPERATIONS RESEARCH, 2008, 56 (03) : 607 - 617
  • [20] Ginzburg V., 1950, SUPERCONDUCTIVITY SU, V20, P1064, DOI 10.1007/978-3-540-68008-6_4