Co-expression networks for plant biology: why and how

被引:60
|
作者
Rao, Xiaolan [1 ,2 ]
Dixon, Richard A. [1 ,2 ]
机构
[1] Univ North Texas, BioDiscovery Inst, Denton, TX 76203 USA
[2] Univ North Texas, Dept Biol Sci, Denton, TX 76203 USA
关键词
co-expression; co-expression network; gene network; transcriptomics; data mining; CELL-WALL BIOSYNTHESIS; ARABIDOPSIS-THALIANA; ANALYSIS REVEALS; GENES; MODULES; MAIZE; IDENTIFICATION; INFORMATION; EVOLUTION; INFERENCE;
D O I
10.1093/abbs/gmz080
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Co-expression network analysis is one of the most powerful approaches for interpretation of large transcriptomic datasets. It enables characterization of modules of co-expressed genes that may share biological functional linkages. Such networks provide an initial way to explore functional associations from gene expression profiling and can be applied to various aspects of plant biology. This review presents the applications of co-expression network analysis in plant biology and addresses optimized strategies from the recent literature for performing co-expression analysis on plant biological systems. Additionally, we describe the combined interpretation of co-expression analysis with other genomic data to enhance the generation of biologically relevant information.
引用
收藏
页码:981 / 988
页数:8
相关论文
共 50 条
  • [21] COGENT: evaluating the consistency of gene co-expression networks
    Bozhilova, Lyuba, V
    Pardo-Diaz, Javier
    Reinert, Gesine
    Deane, Charlotte M.
    BIOINFORMATICS, 2021, 37 (13) : 1928 - 1929
  • [22] CoExp: A Web Tool for the Exploitation of Co-expression Networks
    Garcia-Ruiz, Sonia
    Gil-Martinez, Ana L.
    Cisterna, Alejandro
    Jurado-Ruiz, Federico
    Reynolds, Regina H.
    Cookson, Mark R.
    Hardy, John
    Ryten, Mina
    Botia, Juan A.
    FRONTIERS IN GENETICS, 2021, 12
  • [23] Discovering Weighted Motifs in Gene co-expression Networks
    Choobdar, Sarvenaz
    Ribeiro, Pedro
    Silva, Fernando
    30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 10 - 17
  • [24] An application of the Shapley value to the analysis of co-expression networks
    Cesari G.
    Algaba E.
    Moretti S.
    Nepomuceno J.A.
    Applied Network Science, 3 (1)
  • [25] Interactional and functional centrality in transcriptional co-expression networks
    Prifti, Edi
    Zucker, Jean-Daniel
    Clement, Karine
    Henegar, Corneliu
    BIOINFORMATICS, 2010, 26 (24) : 3083 - 3089
  • [26] Gene Co-expression Networks in Schizophrenia Postmortem Brains
    Chen, Chao
    BIOLOGICAL PSYCHIATRY, 2012, 71 (08) : 229S - 229S
  • [27] Effects of threshold on the topology of gene co-expression networks
    Villar Couto, Cynthia Martins
    Comin, Cesar Henrique
    Costa, Luciano da Fontoura
    MOLECULAR BIOSYSTEMS, 2017, 13 (10) : 2024 - 2035
  • [28] Module extraction from subspace co-expression networks
    Ahmed, Hasin Afzal
    Mahanta, Priyakshi
    Bhattacharyya, Dhruba Kr
    Kalita, Jugal Kr
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2012, 1 (04): : 183 - 195
  • [29] Co-expression networks: graph properties and topological comparisons
    Xulvi-Brunet, Ramon
    Li, Hongzhe
    BIOINFORMATICS, 2010, 26 (02) : 205 - 214
  • [30] gViz, a novel tool for the visualization of co-expression networks
    Helaers R.
    Bareke E.
    De Meulder B.
    Pierre M.
    Depiereux S.
    Habra N.
    Depiereux E.
    BMC Research Notes, 4 (1)