We study, both analytically and numerically, families of periodic solutions of the nonlinear Schrodinger equation with periodically-modulated third-order dispersion (TOD) and complex-valued potential. The TOD and the complex potential are built as solutions of an inverse problem, which predicts the explicit expressions of the complex-valued potential and the TOD supporting a required phase-gradient structure of the periodic solutions. We investigate in detail the band structure of the stability problem of the periodic solutions in the corresponding periodic complex potential by means of plane-wave-expansion method and direct numerical simulations of the evolution of the perturbed inputs. The results show that the band stability domains of the periodic solutions may be narrowed when increasing the nonlinear effects and the amplitudes of periodic solutions.
机构:
Univ Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, MexicoUniv Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
Yepez-Martinez, H.
Rezazadeh, Hadi
论文数: 0引用数: 0
h-index: 0
机构:
Amol Univ Special Modern Technol, Fac Engn Technol, Amol, IranUniv Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
Rezazadeh, Hadi
Gomez-Aguilar, J. F.
论文数: 0引用数: 0
h-index: 0
机构:
Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, MexicoUniv Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
Gomez-Aguilar, J. F.
Inc, Mustafa
论文数: 0引用数: 0
h-index: 0
机构:
Biruni Univ, Dept Comp Engn, Istanbul, Turkey
Firat Univ, Sience Fac, Dept Math, TR-23119 Elazig, Turkey
China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, TaiwanUniv Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico