Dominance of the suppressed: Power-law size structure in tropical forests

被引:91
|
作者
Farrior, C. E. [1 ,2 ]
Bohlman, S. A. [3 ,4 ]
Hubbell, S. [4 ,5 ]
Pacala, S. W. [6 ]
机构
[1] Natl Inst Math & Biol Synth, Knoxville, TN 37996 USA
[2] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[3] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[4] Smithsonian Trop Res Inst, Balboa, Ancon, Panama
[5] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA
[6] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
GENERAL QUANTITATIVE THEORY; TREE SIZE; NEOTROPICAL FOREST; METABOLIC ECOLOGY; TEMPERATE FOREST; GROWTH; DISTRIBUTIONS; DYNAMICS; MODEL; DISTURBANCES;
D O I
10.1126/science.aad0592
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tropical tree size distributions are remarkably consistent despite differences in the environments that support them. With data analysis and theory, we found a simple and biologically intuitive hypothesis to explain this property, which is the foundation of forest dynamics modeling and carbon storage estimates. After a disturbance, new individuals in the forest gap grow quickly in full sun until they begin to overtop one another. The two-dimensional space-filling of the growing crowns of the tallest individuals relegates a group of losing, slow-growing individuals to the understory. Those left in the understory follow a power-law size distribution, the scaling of which depends on only the crown area-to-diameter allometry exponent: a well-conserved value across tropical forests.
引用
收藏
页码:155 / 157
页数:3
相关论文
共 50 条
  • [41] Fractal dimensions of jammed packings with power-law particle size distributions in two and three dimensions
    Monti, Joseph M.
    Srivastava, Ishan
    Silbert, Leonardo E.
    Lechman, Jeremy B.
    Grest, Gary S.
    PHYSICAL REVIEW E, 2023, 108 (04)
  • [42] Electrowetting of power-law fluids in microgrooved channels
    Izadi, Reza
    Moosavi, Ali
    PHYSICS OF FLUIDS, 2020, 32 (07)
  • [43] Persistence of Locality in Systems with Power-Law Interactions
    Gong, Zhe-Xuan
    Foss-Feig, Michael
    Michalakis, Spyridon
    Gorshkov, Alexey V.
    PHYSICAL REVIEW LETTERS, 2014, 113 (03)
  • [44] Power-law adaptation in the presynaptic vesicle cycle
    Mikulasch, Fabian A.
    Georgiev, Svilen V.
    Rudelt, Lucas
    Rizzoli, Silvio O.
    Priesemann, Viola
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [45] How rare are power-law networks really?
    Artico, I.
    Smolyarenko, I.
    Vinciotti, V.
    Wit, E. C.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241):
  • [46] Strong fragmentation and coagulation with power-law rates
    Banasiak, Jacek
    Lamb, Wilson
    Langer, Matthias
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 199 - 215
  • [47] Wavy regime of a power-law film flow
    Ruyer-Quil, C.
    Chakraborty, S.
    Dandapat, B. S.
    JOURNAL OF FLUID MECHANICS, 2012, 692 : 220 - 256
  • [48] Power-law description of martensite transformation curves
    Guimaraes, J. R. C.
    Rios, P. R.
    Alves, A. L. M.
    MATERIALS SCIENCE AND TECHNOLOGY, 2021, 37 (17) : 1362 - 1369
  • [49] Sedimentation and precipitation of nanoparticles in power-law fluids
    Zheng, Liancun
    Li, Botong
    Lin, Ping
    Zhang, Xinxin
    Zhang, Chaoli
    Zhao, Bin
    Wang, Tongtong
    MICROFLUIDICS AND NANOFLUIDICS, 2013, 15 (01) : 11 - 18
  • [50] Power-Law Distributed Graph Generation With MapReduce
    Angles, Renzo
    Lopez-Gallegos, Fernanda
    Paredes, Rodrigo
    IEEE ACCESS, 2021, 9 : 94405 - 94415