Dominance of the suppressed: Power-law size structure in tropical forests

被引:91
|
作者
Farrior, C. E. [1 ,2 ]
Bohlman, S. A. [3 ,4 ]
Hubbell, S. [4 ,5 ]
Pacala, S. W. [6 ]
机构
[1] Natl Inst Math & Biol Synth, Knoxville, TN 37996 USA
[2] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[3] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[4] Smithsonian Trop Res Inst, Balboa, Ancon, Panama
[5] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA
[6] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
GENERAL QUANTITATIVE THEORY; TREE SIZE; NEOTROPICAL FOREST; METABOLIC ECOLOGY; TEMPERATE FOREST; GROWTH; DISTRIBUTIONS; DYNAMICS; MODEL; DISTURBANCES;
D O I
10.1126/science.aad0592
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tropical tree size distributions are remarkably consistent despite differences in the environments that support them. With data analysis and theory, we found a simple and biologically intuitive hypothesis to explain this property, which is the foundation of forest dynamics modeling and carbon storage estimates. After a disturbance, new individuals in the forest gap grow quickly in full sun until they begin to overtop one another. The two-dimensional space-filling of the growing crowns of the tallest individuals relegates a group of losing, slow-growing individuals to the understory. Those left in the understory follow a power-law size distribution, the scaling of which depends on only the crown area-to-diameter allometry exponent: a well-conserved value across tropical forests.
引用
收藏
页码:155 / 157
页数:3
相关论文
共 50 条
  • [21] General power-law temporal scaling for unequal-size microbubble coalescence
    Chen, Rou
    Yu, Huidan
    Zeng, Jianhuan
    Zhu, Likun
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [22] Power-Law Distributions from Sigma-Pi Structure of Sums of Random Multiplicative Processes
    de Sousa, Arthur Matsuo Yamashita Rios
    Takayasu, Hideki
    Sornette, Didier
    Takayasu, Misako
    ENTROPY, 2017, 19 (08):
  • [23] Undersampling power-law size distributions: effect on the assessment of extreme natural hazards
    Geist, Eric L.
    Parsons, Tom
    NATURAL HAZARDS, 2014, 72 (02) : 565 - 595
  • [24] Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system
    Aiba, Shin-ichiro
    Akutsu, Kosuke
    Onoda, Yusuke
    ANNALS OF BOTANY, 2013, 112 (09) : 1899 - 1909
  • [25] Power-law statistics and universal scaling in the absence of criticality
    Touboul, Jonathan
    Destexhe, Alain
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [26] On braneworld inverse power-law inflation
    Es-sobbahi, H.
    Nach, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (10):
  • [27] Power-law forgetting in synapses with metaplasticity
    Mehta, A.
    Luck, J. M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [28] On the Discretization of the Power-Law Hemolysis Model
    Faghih, Mohammad M.
    Islam, Ahmed
    Sharp, M. Keith
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (01):
  • [29] Power-law and log-normal avalanche size statistics in random growth processes
    Polizzi, Stefano
    Perez-Reche, Francisco -Jose
    Arneodo, Alain
    Argoul, Francoise
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [30] A simple test for power-law behavior
    Urzua, Carlos M.
    STATA JOURNAL, 2020, 20 (03) : 604 - 612