Dominance of the suppressed: Power-law size structure in tropical forests

被引:91
|
作者
Farrior, C. E. [1 ,2 ]
Bohlman, S. A. [3 ,4 ]
Hubbell, S. [4 ,5 ]
Pacala, S. W. [6 ]
机构
[1] Natl Inst Math & Biol Synth, Knoxville, TN 37996 USA
[2] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[3] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[4] Smithsonian Trop Res Inst, Balboa, Ancon, Panama
[5] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA
[6] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
GENERAL QUANTITATIVE THEORY; TREE SIZE; NEOTROPICAL FOREST; METABOLIC ECOLOGY; TEMPERATE FOREST; GROWTH; DISTRIBUTIONS; DYNAMICS; MODEL; DISTURBANCES;
D O I
10.1126/science.aad0592
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tropical tree size distributions are remarkably consistent despite differences in the environments that support them. With data analysis and theory, we found a simple and biologically intuitive hypothesis to explain this property, which is the foundation of forest dynamics modeling and carbon storage estimates. After a disturbance, new individuals in the forest gap grow quickly in full sun until they begin to overtop one another. The two-dimensional space-filling of the growing crowns of the tallest individuals relegates a group of losing, slow-growing individuals to the understory. Those left in the understory follow a power-law size distribution, the scaling of which depends on only the crown area-to-diameter allometry exponent: a well-conserved value across tropical forests.
引用
收藏
页码:155 / 157
页数:3
相关论文
共 50 条
  • [1] Will forest size structure follow the-2 power-law distribution under ideal demographic equilibrium state?
    Zhou, Jian
    Lin, Guanghui
    JOURNAL OF THEORETICAL BIOLOGY, 2018, 452 : 17 - 21
  • [2] The power-law distribution of agricultural land size*
    Akhundjanov, Sherzod B.
    Chamberlain, Lauren
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (16) : 3044 - 3056
  • [3] Power-law connections: From Zipf to Heaps and beyond
    Eliazar, Iddo I.
    Cohen, Morrel H.
    ANNALS OF PHYSICS, 2013, 332 : 56 - 74
  • [4] Learning Structure of Power-Law Markov Networks
    Das, Abhik Kumar
    Netrapalli, Praneeth
    Sanghavi, Sujay
    Vishwanath, Sriram
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2272 - 2276
  • [5] On power-law fluids with the power-law index proportional to the pressure
    Malek, J.
    Rajagopal, K. R.
    Zabensky, J.
    APPLIED MATHEMATICS LETTERS, 2016, 62 : 118 - 123
  • [6] On the structure and phase transitions of power-law Poissonian ensembles
    Eliazar, Iddo
    Oshanin, Gleb
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (40)
  • [7] Levy flights with power-law absorption
    Cattivelli, Luca
    Agliari, Elena
    Sartori, Fabio
    Cassi, Davide
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [8] Anisotropic power-law viscoelasticity of living cells is dominated by cytoskeletal network structure
    Hang, Jiu-Tao
    Wang, Huan
    Wang, Bi-Cong
    Xu, Guang-Kui
    ACTA BIOMATERIALIA, 2024, 180 : 197 - 205
  • [9] Power-law ansatz in complex systems: Excessive loss of information
    Tsai, Sun-Ting
    Chang, Chin-De
    Chang, Ching-Hao
    Tsai, Meng-Xue
    Hsu, Nan-Jung
    Hong, Tzay-Ming
    PHYSICAL REVIEW E, 2015, 92 (06)
  • [10] Relationships between size and abundance in beach plastics: A power-law approach
    Bozzeda, Fabio
    Zangaro, Francesco
    Colangelo, Marina Antonia
    Pinna, Maurizio
    MARINE POLLUTION BULLETIN, 2021, 173