Study on density peaks clustering based on k-nearest neighbors and principal component analysis

被引:371
|
作者
Du, Mingjing [1 ,2 ]
Ding, Shifei [1 ,2 ]
Jia, Hongjie [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100090, Peoples R China
基金
中国国家自然科学基金;
关键词
Data clustering; Density peaks; k Nearest neighbors (KNN); Principal component analysis (PCA); ALGORITHM; SEARCH;
D O I
10.1016/j.knosys.2016.02.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Density peaks clustering (DPC) algorithm published in the US journal Science in 2014 is a novel clustering algorithm based on density. It needs neither iterative process nor more parameters. However, original algorithm only has taken into account the global structure of data, which leads to missing many clusters. In addition, DPC does not perform well when data sets have relatively high dimension. Especially, DPC generates wrong number of clusters of real-world data sets. In order to overcome the first problem, we propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which introduces the idea of k nearest neighbors (KNN) into DPC and has another option for the local density computation. In order to overcome the second problem, we introduce principal component analysis (PCA) into the model of DPC-KNN and further bring forward a method based on PCA (DPC-KNN-PCA), which preprocesses high dimensional data. By experiments on synthetic data sets, we demonstrate the feasibility of our algorithms. By experiments on real-world data sets, we compared this algorithm with k-means algorithm and spectral clustering (SC) algorithm in accuracy. Experimental results show that our algorithms are feasible and effective. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 50 条
  • [31] Density Peak Clustering Algorithm Based on K-nearest Neighbors and Optimized Allocation Strategy
    Sun L.
    Qin X.-Y.
    Xu J.-C.
    Xue Z.-A.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (04): : 1390 - 1411
  • [32] AN APPROXIMATE CLUSTERING TECHNIQUE BASED ON THE K-NEAREST NEIGHBORS METHOD
    KOVALENKO, AP
    AUTOMATION AND REMOTE CONTROL, 1992, 53 (10) : 1592 - 1598
  • [33] A novel density peaks clustering algorithm based on K nearest neighbors with adaptive merging strategy
    Xiaoning Yuan
    Hang Yu
    Jun Liang
    Bing Xu
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 2825 - 2841
  • [34] A novel density peaks clustering algorithm based on K nearest neighbors with adaptive merging strategy
    Yuan, Xiaoning
    Yu, Hang
    Liang, Jun
    Xu, Bing
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (10) : 2825 - 2841
  • [35] A novel density peaks clustering algorithm based on k nearest neighbors for improving assignment process
    Jiang, Jianhua
    Chen, Yujun
    Meng, Xianqiu
    Wang, Limin
    Li, Keqin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 702 - 713
  • [36] NNVDC: A new versatile density-based clustering method using k-Nearest Neighbors
    Prasad, Rabinder Kumar
    Sarmah, Rosy
    Chakraborty, Subrata
    Sarmah, Sauravjyoti
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [37] Graph Distance and Adaptive K-Nearest Neighbors Selection-Based Density Peak Clustering
    Sun, Yuqin
    Wang, Jingcong
    Sun, Yuan
    Zhang, Pengcheng
    Wang, Tianyi
    IEEE ACCESS, 2024, 12 : 71783 - 71796
  • [38] An efficient clustering algorithm based on the k-nearest neighbors with an indexing ratio
    Raneem Qaddoura
    Hossam Faris
    Ibrahim Aljarah
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 675 - 714
  • [39] An efficient clustering algorithm based on the k-nearest neighbors with an indexing ratio
    Qaddoura, Raneem
    Faris, Hossam
    Aljarah, Ibrahim
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 675 - 714
  • [40] Graph Clustering Using Mutual K-Nearest Neighbors
    Sardana, Divya
    Bhatnagar, Raj
    ACTIVE MEDIA TECHNOLOGY, AMT 2014, 2014, 8610 : 35 - 48