Techno-economic optimization and off-design analysis of CO2 purification units for cement plants with oxyfuel-based CO2 capture

被引:21
|
作者
Magli, Francesco [1 ,2 ]
Spinelli, Maurizio [3 ]
Fantini, Martina [3 ]
Romano, Matteo Carmelo [1 ]
Gatti, Manuele [1 ]
机构
[1] Politecn Milan, DOE, Via Lambruschini 4, I-20156 Milan, Italy
[2] Buzzi Unicem SpA, Via Luigi Buzzi 6, I-15033 Casale Monferrato, Italy
[3] Lab Energia & Ambiente Piacenza LEAP, Via Nino Bixio 27-C, I-29121 Piacenza, Italy
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
CO2 purification unit; CO2; capture; Oxyfuel; Calcium looping; Cement decarbonization; FUEL COMBUSTION TECHNOLOGY; CARBON CAPTURE; NUMERICAL OPTIMIZATION; LOOPING PROCESS; COMPRESSION; STATE; INTEGRATION;
D O I
10.1016/j.ijggc.2022.103591
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper evaluates the technical and economic performance, as well as the direct/indirect CO2 emissions of the CO2 Purification Unit (CPU) for cement plants equipped with oxyfuel-based CO2 capture. Two configurations, targeting two different outlet CO2 specifications ('moderate' 95% purity and 'high' 99.9% purity) are designed, modelled and optimized in order to minimize the incremental clinker production cost for different values of the carbon tax. Mass and energy balances are simulated with Aspen Plus, while the operating conditions are numerically optimized with Matlab. Results show that moderate purity can be achieved with an increased cost of clinker of 16.3 euro/tclk (CO2 recovery 99.3%), while the base high purity configuration leads to a 19.3 euro/tclk increase (CO2 recovery 96.1%). Sensitivity analyses are carried out on design parameters (fuel and air infiltrations in the oxyfuel calciner line) and exogenous factors (carbon tax, CO2 intensity of electricity). Air infiltration rate has the highest impact on the incremental cost of clinker (increased by 25% when air leakage grows from 0 to 10%) and on the selection of optimal operational conditions. Off-design analyses aimed at assessing the impact of air infiltration changing over time highlight the relevance of designing the CPU for the scenario with air infiltrations, while selecting reasonable temperature differences (e.g. 5K) to avoid operability issues in the cold box heat exchanger. For the base case CPU, the cost of clinker increases by 3 euro/tclk when moving from zero to 10% air infiltration.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Techno-economic and environmental assessment of CO2 capture technologies in the cement industry
    Antzaras, Andy N.
    Papalas, Theodoros
    Heracleous, Eleni
    Kouris, Charalampos
    JOURNAL OF CLEANER PRODUCTION, 2023, 428
  • [2] Techno-economic analysis of the Ca-Cu process integrated in hydrogen plants with CO2 capture
    Riva, Leonardo
    Martinez, Isabel
    Martini, Michela
    Gallucci, Fausto
    Annaland, Martin van Sint
    Romano, Matteo C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (33) : 15720 - 15738
  • [3] Techno-economic study of CO2 capture from natural gas based hydrogen plants
    Tarun, Cynthia B.
    Croiset, Eric
    Douglas, Peter L.
    Gupta, Murlidhar
    Chowdhury, Mohammad H. M.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2007, 1 (01) : 55 - 61
  • [4] Techno-economic assessment of CO2 capture possibilities for oil shale power plants
    Saia, Artjom
    Neshumayev, Dmitri
    Hazak, Aaro
    Sander, Priit
    Jarvik, Oliver
    Konist, Alar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 169
  • [5] Integrated CO2 capture and conversion into methanol units: Assessing techno-economic and environmental aspects compared to CO2 into SNG alternative
    Djettene, Rania
    Dubois, Lionel
    Duprez, Marie-Eve
    De Weireld, Guy
    Thomas, Diane
    JOURNAL OF CO2 UTILIZATION, 2024, 85
  • [6] Techno-Economic Analysis of CO2 Capture Processes from Coal-fired Power Plants
    Yun, Seokwon
    Lee, Sunghoon
    Kim, Jin-Kuk
    28TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2018, 43 : 1519 - 1520
  • [7] Review and techno-economic assessment of fuel cell technologies with CO2 capture
    Slater, J. D.
    Chronopoulos, T.
    Panesar, R. S.
    Fitzgerald, F. D.
    Garcia, M.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 91
  • [8] Techno-Economic Assessment of Different Heat Exchangers for CO2 Capture
    Aromada, Solomon Aforkoghene
    Eldrup, Nils Henrik
    Normann, Fredrik
    Oi, Lars Erik
    ENERGIES, 2020, 13 (23)
  • [9] Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes
    Hospital-Benito, D.
    Lemus, J.
    Moya, C.
    Santiago, R.
    Ferro, V. R.
    Palomar, J.
    CHEMICAL ENGINEERING JOURNAL, 2021, 407
  • [10] Techno-economic analysis of power and hydrogen co-production by an IGCC plant with CO2 capture based on membrane technology
    Sofia, Daniele
    Giuliano, Aristide
    Poletto, Massimo
    Barletta, Diego
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2015, 37 : 1373 - 1378