A Note on Lagrange Interpolation of | x | on the Chebyshev and Chebyshev-Lobatto Nodal Systems: The Even Cases

被引:0
|
作者
Berriochoa, Elias [1 ]
Cachafeiro, Alicia [1 ]
Garcia-Rabade, Hector [2 ]
Manuel Garcia-Amor, Jose [3 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, Vigo 36310, Spain
[2] Univ Vigo, Dept Matemat Aplicada 2, Orense 32004, Spain
[3] Inst ES Valle Inclan, Xunta Galicia, Pontevedra 36001, Spain
关键词
Lagrange interpolation; Chebyshev nodal systems; Chebyshev-Lobatto nodal systems; absolute value approximation; rate of convergence; Gibbs-Wilbraham phenomena; GIBBS PHENOMENON;
D O I
10.3390/math10152558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Throughout this study, we continue the analysis of a recently found out Gibbs-Wilbraham phenomenon, being related to the behavior of the Lagrange interpolation polynomials of the continuous absolute value function. Our study establishes the error of the Lagrange polynomial interpolants of the function vertical bar x vertical bar on [-1, 1], using Chebyshev and Chebyshev-Lobatto nodal systems with an even number of points. Moreover, with respect to the odd cases, relevant changes in the shape and the extrema of the error are given.
引用
收藏
页数:14
相关论文
共 40 条