SHIFT-INVARIANT SUBSPACES INVARIANT FOR COMPOSITION OPERATORS ON THE HARDY-HILBERT SPACE

被引:9
|
作者
Cowen, Carl C. [1 ]
Wahl, Rebecca G. [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Butler Univ, Dept Math, Indianapolis, IN 46208 USA
关键词
Composition operator; shift-invariant subspace;
D O I
10.1090/S0002-9939-2014-12132-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If phi is an analytic map of the unit disk D into itself, the composition operator C-phi on a Hardy space H-2 is defined by C-phi(f) = f omicron phi. The unilateral shift on H-2 is the operator of multiplication by z. Beurling (1949) characterized the invariant subspaces for the shift. In this paper, we consider the shift-invariant subspaces that are invariant for composition operators. More specifically, necessary and sufficient conditions are provided for an atomic inner function with a single atom to be invariant for a composition operator, and the Blaschke product invariant subspaces for a composition operator are described. We show that if phi has Denjoy-Wolff point a on the unit circle, the atomic inner function subspaces with a single atom at a are invariant subspaces for the composition operator C-phi.
引用
收藏
页码:4143 / 4154
页数:12
相关论文
共 50 条
  • [31] A Local Weighted Average Sampling and Reconstruction Theorem over Shift Invariant Subspaces
    P. Devaraj
    S. Yugesh
    Results in Mathematics, 2017, 71 : 319 - 332
  • [32] A Local Weighted Average Sampling and Reconstruction Theorem over Shift Invariant Subspaces
    Devaraj, P.
    Yugesh, S.
    RESULTS IN MATHEMATICS, 2017, 71 (1-2) : 319 - 332
  • [33] COMPOSITION OPERATORS ON THE BLOCH SPACE OF THE UNIT BALL OF A HILBERT SPACE
    Blasco, Oscar
    Galindo, Pablo
    Lindstrom, Mikael
    Miralles, Alejandro
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (02): : 311 - 334
  • [34] TWO PROBLEMS ABOUT COMPOSITION OPERATORS ON HARDY SPACE
    吴树宏
    王茂发
    刘培德
    Acta Mathematica Scientia, 2005, (03) : 515 - 524
  • [35] Two problems about composition operators on Hardy space
    Wu, SH
    Wang, MF
    Liu, PD
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (03) : 515 - 524
  • [36] The Invariant Subspace Problem via Composition Operators-redux
    Shapiro, Joel H.
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 519 - 534
  • [37] Toeplitzness of composition operators on a Hilbert space of Dirichlet series
    Yao, Xingxing
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (05) : 625 - 639
  • [38] Hilbert–Schmidt differences of composition operators on the Bergman space
    Boo Rim Choe
    Takuya Hosokawa
    Hyungwoon Koo
    Mathematische Zeitschrift, 2011, 269 : 751 - 775
  • [39] A sampling theorem for shift-invariant subspace generated by several scaling functions in L(2)(R)
    Shu, S
    Jin, JC
    Yu, HY
    Gao, XP
    ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 24 - 27
  • [40] Approximation Numbers of Composition Operators on the Hardy Space of the Infinite Polydisk
    Li, Daniel
    Queffelec, Herve
    Rodriguez-Piazza, Luis
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 89 (04) : 493 - 505