On the minimum of a positive polynomial over the standard simplex

被引:13
作者
Jeronimo, Gabriela [1 ,2 ]
Perrucci, Daniel [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
Positivity of polynomials; Optimization on polyhedra; POLYAS THEOREM;
D O I
10.1016/j.jsc.2010.01.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a new positive lower bound for the minimum value taken by a polynomial P with integer coefficients in k variables over the standard simplex of assuming that P is positive on the simplex. This bound depends only on the number of variables k, the degree d and the bitsize tau of the coefficients of P and improves all the previous bounds for arbitrary polynomials which are positive over the simplex. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:434 / 442
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2006, ALGORITHMS COMPUTATI
[2]  
[Anonymous], 1987, COMPLEXITY ROBOT MOT
[3]  
BASU S, 2009, ARXIV09023304
[4]  
BOCHNAK J, 1987, ERGEBNISSE MATH IHRE, V3, P12
[5]   An effective version of Polya's theorem on positive definite forms [J].
deLoera, JA ;
Santos, F .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 108 (03) :231-240
[6]  
EMIRIS I, 2009, DMM BOUND MULT UNPUB
[7]  
GonzalezVega L, 1995, LECT NOTES COMPUT SC, V948, P232
[8]   On Sign Conditions Over Real Multivariate Polynomials [J].
Jeronimo, Gabriela ;
Perrucci, Daniel ;
Sabia, Juan .
DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) :195-222
[9]  
LEROY R, 2008, THESIS U RENNES 1
[10]  
MIGNOTTE M, 1999, SPRINGER SERIES DISC