A UHF-RFID Gate Control System Based on a Recurrent Neural Network

被引:11
作者
Alvarez-Narciandi, Guillermo [1 ]
Motroni, Andrea [2 ]
Rodriguez Pino, Marcos [1 ]
Buffi, Alice [3 ]
Nepa, Paolo [2 ]
机构
[1] Univ Oviedo, Dept Ingn Elect, Oviedo 33003, Spain
[2] Univ Pisa, Dept Informat Engn, I-56126 Pisa, Italy
[3] Univ Pisa, Dept Energy Syst Terr & Construct Engn, I-56126 Pisa, Italy
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2019年 / 18卷 / 11期
关键词
Radio frequency identification (RFID) machine learning; recurrent neural network (RNN); RFID neural network; UHF-RFID gate;
D O I
10.1109/LAWP.2019.2929416
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a novel, cost-effective, and easy-to-deploy solution to discriminate the direction of goods crossing a UHF radio frequency identification (RFID) gate in a warehouse scenario. The system is based on a grid of UHF-RFID tags deployed on the floor underneath the gate equipped with a single reader antenna. When a transpallet crosses the gate, it shadows the tags of the deployed grid differently, according to the specific direction, namely incoming or outgoing. Such distinguishable signature is employed as input of a recurrent neural network. In particular, the number of readings for each tag is aggregated within short time windows, and a sequence of binary read/missed tag data over the time is extracted. Such temporal sequences are used to train a long short-term memory neural network. Classification performance of the proposed method is shown through a set of measurements in an indoor scenario.
引用
收藏
页码:2330 / 2334
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2010, 2010 INT THINGS IOT, DOI [10.1109/I0T.2010.5678439, DOI 10.1109/IOT.2010.5678439]
[2]  
Buffi A, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON RFID TECHNOLOGY & APPLICATION (RFID-TA), P45, DOI 10.1109/RFID-TA.2017.8098900
[3]   The SARFID Technique for Discriminating Tagged Items Moving Through a UHF-RFID Gate [J].
Buffi, Alice ;
Nepa, Paolo .
IEEE SENSORS JOURNAL, 2017, 17 (09) :2863-2870
[4]  
Eckstein E., 2010, U.S. Patent, Patent No. [20 050 012 613A1, 20]
[5]  
Everything RF, 2019, MOR 15 BILL RAIN RFI
[6]  
Geigl F., 2017, P 2017 IEEE INT C RF, P73
[7]  
Goller M, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON RFID (IEEE RFID), P89, DOI 10.1109/RFID.2014.6810717
[8]  
Gregor K, 2015, PR MACH LEARN RES, V37, P1462
[9]  
Hauser Matthias, 2017, 2017 IEEE International Conference on RFID (RFID), P167, DOI 10.1109/RFID.2017.7945604
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]