Active Region Design for High-Speed 850-nm VCSELs

被引:81
作者
Healy, Sorcha B. [1 ]
O'Reilly, Eoin P. [1 ,2 ]
Gustavsson, Johan S. [3 ]
Westbergh, Petter [3 ]
Haglund, Asa [3 ]
Larsson, Anders [3 ]
Joel, Andrew [4 ]
机构
[1] Tyndall Natl Inst, Cork, Ireland
[2] Natl Univ Ireland Univ Coll Cork, Dept Phys, Cork, Ireland
[3] Chalmers, Photon Lab, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[4] IQE Europe Ltd, Cardiff CF3 0LW, S Glam, Wales
基金
爱尔兰科学基金会;
关键词
Differential gain; high speed; vertical-cavity surface-emitting laser (VCSEL); QUANTUM-WELL LASERS; SURFACE-EMITTING LASERS; HIGH-EFFICIENCY; GBIT/S;
D O I
10.1109/JQE.2009.2038176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Higher speed short-wavelength (850 nm) VCSELs are required for future high-capacity, short-reach data communication links. The modulation bandwidth of such devices is intrinsically limited by the differential gain of the quantum wells (QWs) used in the active region. We present gain calculations using an 8-band k.p Hamiltonian which show that the incorporation of 10% In in an InGaAs/AlGaAs QW structure can approximately double the differential gain compared to a GaAs/AlGaAs QW structure, with little additional improvement achieved by further increasing the In composition in the QW. This improvement is confirmed by extracting the differential gain value from measurements of the modulation response of VCSELs with optimized InGaAs/AlGaAs QW and conventional GaAs/AlGaAs QW active regions. Excellent agreement is obtained between the theoretically and experimentally determined values of the differential gain, confirming the benefits of strained InGaAs QW structures for high-speed 850-nm VCSEL applications.
引用
收藏
页码:506 / 512
页数:7
相关论文
共 19 条
[1]   Large aperture 850 nm oxide-confined VCSELs for 10Gb/s data communication [J].
Aggerstam, T ;
Von Würtemberg, RM ;
Runnström, C ;
Choumas, E .
VERTICAL-CAVITY SURFACE-EMITTING LASERS VI, 2002, 4649 :19-24
[2]   CALCULATIONS OF HOLE SUBBANDS IN SEMICONDUCTOR QUANTUM WELLS AND SUPERLATTICES [J].
ALTARELLI, M ;
EKENBERG, U ;
FASOLINO, A .
PHYSICAL REVIEW B, 1985, 32 (08) :5138-5143
[3]  
ANAN T, 2008, P OPT FIB COMM C SAN, P4
[4]   Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s [J].
Blokhin, S. A. ;
Lott, J. A. ;
Mutig, A. ;
Fiol, G. ;
Ledentsov, N. N. ;
Maximov, M. V. ;
Nadtochiy, A. M. ;
Shchukin, V. A. ;
Bimberg, D. .
ELECTRONICS LETTERS, 2009, 45 (10) :501-502
[5]   High-efficiency, high-speed VCSELs with 35Gbit/s error-free operation [J].
Chang, Y.-C. ;
Wang, C. S. ;
Coldren, L. A. .
ELECTRONICS LETTERS, 2007, 43 (19) :1022-1024
[6]   Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers [J].
Chang, Yu-Chia ;
Coldren, Larry A. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (03) :704-715
[7]   Influence of electrostatic confinement on optical gain in GaInNAs quantum-well lasers [J].
Healy, Sorcha B. ;
O'Reilly, Eoin P. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006, 42 (5-6) :608-615
[8]   HIGH-EFFICIENCY AND LOW-THRESHOLD INGAAS/ALGAAS QUANTUM-WELL LASERS [J].
HU, SY ;
YOUNG, DB ;
CORZINE, SW ;
GOSSARD, AC ;
COLDREN, LA .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (06) :3932-3934
[9]  
JOHNSON RH, 2008, P C LAS EL OPT SAN J, P4
[10]  
KRIJN MPC, 1991, SEMICOND SCI TECH, V5, P27