Redundancy Pruning for Binary Hyperdimensional Computing Architectures

被引:1
|
作者
Antonio, Ryan Albert G. [1 ]
Alvarez, Anastacia B. [1 ]
机构
[1] Univ Philippines, Elect & Elect Engn Inst, Diliman, Philippines
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22) | 2022年
关键词
redundancy pruning; hyperdimensional computing; low power digital architectures; artificial intelligence; neuromorphic algorithms;
D O I
10.1109/ISCAS48785.2022.9937640
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperdimensional computing (HDC) is an emerging memory-centric computing paradigm that uses vectors with very high dimensions as distributed representations in associative memories. HDC architectures are energy-efficient compared to conventional artificial neural networks because it uses simple operations. However, HDC architectures still contain massive bitwise operations and a large memory footprint. Current optimizations often reduce dimensions to consume lower energy at the cost of degraded accuracy. In this work, we propose pruning redundant bits in the associative memory because these bits do not contribute any information during classification. Reducing these irrelevant bit-wise operations results in significant energy savings without sacrificing accuracy. We tested the pruning of redundant bits on three applications: character recognition, hand-written digits recognition, and DNA sequencing classification problems. We achieved a speedup of 1.2x-3.4x and 14%-66% energy savings per prediction at the cost of a 6.4%-17.9% increase in area.
引用
收藏
页码:2097 / 2101
页数:5
相关论文
共 50 条
  • [1] A Binary Learning Framework for Hyperdimensional Computing
    Imani, Mohsen
    Messerly, John
    Wu, Fan
    Pi, Wang
    Rosing, Tajana
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 126 - 131
  • [2] Editorial: Brain-inspired Hyperdimensional Computing: Algorithms, models, and architectures
    Jiao, Xun
    Rahimi, Abbas
    Fermuller, Cornelia
    Aloimonos, John Yiannis
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [3] A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part I: Models and Data Transformations
    Kleyko, Denis
    Rachkovskij, Dmitri A.
    Osipov, Evgeny
    Rahimi, Abbas
    ACM COMPUTING SURVEYS, 2023, 55 (06)
  • [4] StrideHD: A Binary Hyperdimensional Computing System Utilizing Window Striding for Image Classification
    Liang, Dehua
    Shiomi, Jun
    Miura, Noriyuki
    Awano, Hiromitsu
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2024, 5 : 211 - 223
  • [5] DistriHD: A Memory Efficient Distributed Binary Hyperdimensional Computing Architecture for Image Classification
    Liang, Dehua
    Shiomi, Jun
    Miura, Noriyuki
    Awano, Hiromitsu
    27TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2022, 2022, : 43 - 49
  • [6] An Introduction to Hyperdimensional Computing for Robotics
    Neubert, Peer
    Schubert, Stefan
    Protzel, Peter
    KUNSTLICHE INTELLIGENZ, 2019, 33 (04): : 319 - 330
  • [7] An Introduction to Hyperdimensional Computing for Robotics
    Peer Neubert
    Stefan Schubert
    Peter Protzel
    KI - Künstliche Intelligenz, 2019, 33 : 319 - 330
  • [8] Symbolic Representation and Learning With Hyperdimensional Computing
    Mitrokhin, Anton
    Sutor, Peter
    Summers-Stay, Douglas
    Fermueller, Cornelia
    Aloimonos, Yiannis
    FRONTIERS IN ROBOTICS AND AI, 2020, 7
  • [9] A General Purpose Hyperdimensional Computing Accelerator for Edge Computing
    Asghari, Mohsen
    Le Beux, Sebastien
    2024 22ND IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS 2024, 2024, : 383 - 387
  • [10] Energy-Efficient Sparse Hyperdimensional Computing for Speech Recognition
    Buelagala, Kim Isaac I.
    Javier, Ginzy S.
    Lipardo, Sean Alfred A.
    Sorsona, James Carlo E.
    Baquiran, Sherry Joy Alvionne S.
    Quizon, Lawrence Roman A.
    Tan, Allen Jason A.
    Antonio, Ryan Albert G.
    Galapon, Fredrick Angelo R.
    Alvarez, Anastacia B.
    2023 20TH INTERNATIONAL SOC DESIGN CONFERENCE, ISOCC, 2023, : 321 - 322