Hermite interpolation and Sobolev orthogonality

被引:4
作者
García-Caballero, EM [1 ]
Pérez, TE
Piñar, MA
机构
[1] Univ Jaen, Dept Matemat, Jaen, Spain
[2] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
关键词
Sobolev bilinear forms; orthogonal polynomials; Hermite interpolation;
D O I
10.1023/A:1006473226163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study orthogonal polynomials with respect to the bilinear form (f, g)(S) = V(f)AV(g)(T) + [u, f((N)) g((N))], where V(f) = (f(c(0)), f '(c(0)), ..., f((n0-1))(c(0)), ..., f(c(p)), f '(c(p)), ..., f((np)-(1))(c(p))), u is a regular linear functional on the linear space P of real polynomials, c(0), c(1), ..., c(p) are distinct real numbers, n(0), n(1), ..., n(p) are positive integer numbers, N = n(0) + n(1) + ... + n(p), and A is a N x N real matrix with all its principal submatrices nonsingular. We establish relations with the theory of interpolation and approximation.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 10 条
[1]  
Alfaro M., 1999, METHODS APPL ANAL, V6, P593, DOI DOI 10.4310/MAA.1999.v6.n4.a10
[2]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[3]  
Davis P. J, 1975, Interpolation and Approximation
[4]  
Jung I. H., 1997, COMM KOREAN MATH SOC, V12, P603
[5]   Sobolev orthogonal polynomials and second-order differential equations [J].
Kwon, KH ;
Littlejohn, LL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) :547-594
[6]  
Kwon KH., 1995, ANN NUMER ANAL, V2, P289
[7]   General Sobolev orthogonal polynomials [J].
Marcellan, F ;
Perez, TE ;
Pinar, MA ;
Ronveaux, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) :614-634
[8]   On Sobolev orthogonality for the generalized Laguerre polynomials [J].
Perez, TE ;
Pinar, MA .
JOURNAL OF APPROXIMATION THEORY, 1996, 86 (03) :278-285
[9]  
STOER J, 1993, INTRO NUMERICAL ANAL
[10]  
SZEGO G, 1975, AM MATH SOC C PUBL, V23