Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach

被引:2
作者
Okasha, Hassan M. [1 ,2 ]
El-Baz, A. H. [3 ]
Basheer, Abdulkareem M. [3 ,4 ]
机构
[1] King AbdulAziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Damietta Univ, Fac Sci, Dept Math, Dumyat, Egypt
[4] Al Bayda Univ, Al Bayda, Yemen
关键词
Marshall Olkin extended inverse Weibull; Bayesian estimation; Maximum likelihood estimation; MCMC approach; FAMILY;
D O I
10.1007/s41096-020-00082-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we invoke a new prospective to discuss the estimation of a three-parameter Marshall Olkin extended inverse Weibull distribution based on Markov Chain Monte Carlo (MCMC) approach. The Bayes estimators under the squared error loss and LINEX loss functions are derived for three parameters. MCMC approach is applied to compute the Bayesian estimation of the unknown parameters. Using a real data application, it is shown that the superior performance of Bayesian estimation.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 19 条
[1]  
Almetwaly E. M., 2018, International Journal of Probability and Statistics, V7, P51
[2]  
[Anonymous], 2005, Int. J. Appl. Math. Comput. Sci
[3]  
Basheer A. M., 2022, Ann. Data Sci, V9, P301, DOI DOI 10.1007/S40745-019-00229-0
[4]   Alpha power inverse Weibull distribution with reliability application [J].
Basheer, Abdulkareem M. .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01) :423-432
[5]   Estimation of parameters of Weibull-Gamma distribution based on progressively censored data [J].
EL-Sagheer, Rashad M. .
STATISTICAL PAPERS, 2018, 59 (02) :725-757
[6]   Marshall-Olkin extended Lomax distribution and its application to censored data [J].
Ghitany, M. E. ;
Al-Awadhi, F. A. ;
Alkhalfan, L. A. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) :1855-1866
[7]  
HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97
[8]   Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data [J].
Kundu, Debasis ;
Howlader, Hatem .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (06) :1547-1558
[9]  
Lee ET., 2003, Statistical Methods for Survival Data Analysis, DOI DOI 10.1002/0471458546
[10]  
Mahmoud M.A., 2016, J STAT APPL PROBAB, V5, P501, DOI [10.18576/jsap/050314, DOI 10.18576/JSAP/050314]