A flexible class of parallel matrix multiplication algorithms

被引:24
|
作者
Gunnels, J [1 ]
Lin, C [1 ]
Morrow, G [1 ]
van de Geijn, R [1 ]
机构
[1] Univ Texas, Dept Comp Sci, Austin, TX 78712 USA
关键词
D O I
10.1109/IPPS.1998.669898
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper explains why parallel implementation of matrix multiplication-a seemingly simple algorithm that can be expressed as one statement and three nested loops-is complex: Practical algorithms that use matrix multiplication tend to use matrices of disparate shapes, and the shape of the matrices can significantly impact the performance of matrix multiplication. We provide a class of algorithms that covers the spectrum of shapes encountered and demonstrate that good performance can be attained if the right algorithm is chosen. While the paper resolves a number of issues, it concludes with discussion of a number of directions yet to be pursued.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 50 条
  • [41] Instability of parallel prefix matrix multiplication
    Mathias, R.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 1):
  • [42] Parallel implementation of interval matrix multiplication
    Revol, Nathalie
    Théveny, Philippe
    Reliable Computing, 2013, 19 (01) : 91 - 106
  • [43] Parallel matrix algorithms
    Bekas, Costas
    Grama, Ananth
    Saad, Yousef
    Schenk, Olaf
    PARALLEL COMPUTING, 2014, 40 (07) : 159 - 160
  • [44] MATRIX ALGORITHMS ON A HYPERCUBE .1. MATRIX MULTIPLICATION
    FOX, GC
    OTTO, SW
    HEY, AJG
    PARALLEL COMPUTING, 1987, 4 (01) : 17 - 31
  • [45] Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms
    Solomonik, Edgar
    Demmel, James
    EURO-PAR 2011 PARALLEL PROCESSING, PT 2, 2011, 6853 : 90 - 109
  • [47] Scalable parallel matrix multiplication on distributed memory parallel computers
    Li, KQ
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (12) : 1709 - 1731
  • [48] APPLICATION OF APPROXIMATING ALGORITHMS TO BOOLEAN MATRIX MULTIPLICATION
    LOTTI, G
    ROMANI, F
    IEEE TRANSACTIONS ON COMPUTERS, 1980, 29 (10) : 927 - 928
  • [49] Analyzing Group Based Matrix Multiplication Algorithms
    Gonzalez-Sanchez, Jon
    Gonzalez-Vega, Laureano
    Pinera-Nicolas, Alejandro
    Polo-Blanco, Irene
    Caravantes, Jorge
    Rua, Ignacio F.
    ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 159 - 165
  • [50] Optimal sampling algorithms for block matrix multiplication
    Niu, Chengmei
    Li, Hanyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425