Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

被引:1365
作者
Levy, N. [1 ,2 ]
Burke, S. A. [1 ]
Meaker, K. L. [1 ]
Panlasigui, M. [1 ]
Zettl, A. [1 ,2 ]
Guinea, F. [3 ]
Castro Neto, A. H. [4 ]
Crommie, M. F. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SCANNING TUNNELING SPECTROSCOPY; DIRAC-FERMIONS; MEMBRANES; PT(111);
D O I
10.1126/science.1191700
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states through the creation of a pseudo-magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C-3v). Here, we present experimental spectroscopic measurements by scanning tunneling microscopy of highly strained nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo-magnetic fields greater than 300 tesla. This demonstration of enormous pseudo-magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called "strain engineering."
引用
收藏
页码:544 / 547
页数:4
相关论文
共 29 条
  • [1] Edge-dependent selection rules in magic triangular graphene flakes
    Akola, J.
    Heiskanen, H. P.
    Manninen, M.
    [J]. PHYSICAL REVIEW B, 2008, 77 (19)
  • [2] Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
  • [3] Observation of the fractional quantum Hall effect in graphene
    Bolotin, Kirill I.
    Ghahari, Fereshte
    Shulman, Michael D.
    Stormer, Horst L.
    Kim, Philip
    [J]. NATURE, 2009, 462 (7270) : 196 - 199
  • [4] Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC
    Brar, Victor W.
    Zhang, Yuanbo
    Yayon, Yossi
    Ohta, Taisuke
    McChesney, Jessica L.
    Bostwick, Aaron
    Rotenberg, Eli
    Horn, Karsten
    Crommie, Michael F.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (12)
  • [5] Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy
    Brar, Victor W.
    Wickenburg, Sebastian
    Panlasigui, Melissa
    Park, Cheol-Hwan
    Wehling, Tim O.
    Zhang, Yuanbo
    Decker, Regis
    Girit, Caglar
    Balatsky, Alexander V.
    Louie, Steven G.
    Zettl, Alex
    Crommie, Michael F.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (03)
  • [6] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [7] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [8] Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
    Du, Xu
    Skachko, Ivan
    Duerr, Fabian
    Luican, Adina
    Andrei, Eva Y.
    [J]. NATURE, 2009, 462 (7270) : 192 - 195
  • [9] Integration of point-contact microscopy and atomic-force microscopy: Application to characterization of graphite/Pt(111)
    Enachescu, M
    Schleef, D
    Ogletree, DF
    Salmeron, M
    [J]. PHYSICAL REVIEW B, 1999, 60 (24) : 16913 - 16919
  • [10] Tunable interfacial properties of epitaxial graphene on metal substrates
    Gao, Min
    Pan, Yi
    Zhang, Chendong
    Hu, Hao
    Yang, Rong
    Lu, Hongliang
    Cai, Jinming
    Du, Shixuan
    Liu, Feng
    Gao, H. -J.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (05)