GRADIENT ESTIMATES FOR A NONLINEAR ELLIPTIC EQUATION ON COMPLETE RIEMANNIAN MANIFOLDS

被引:14
作者
Ma, Bingqing [1 ]
Huang, Guangyue [1 ]
Luo, Yong [2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
关键词
Gradient estimate; nonlinear elliptic equation; Liouville-type theorem; LIOUVILLE TYPE THEOREMS;
D O I
10.1090/proc/14106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short paper, we consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a complete Riemannian manifold: Delta u + cu(alpha) = 0, where c, alpha are two real constants and c not equal 0.
引用
收藏
页码:4993 / 5002
页数:10
相关论文
共 11 条
[1]   A Liouville-Type Theorem for Smooth Metric Measure Spaces [J].
Brighton, Kevin .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :562-570
[2]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[3]   Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity [J].
Guo, Zongming ;
Wei, Juncheng .
MANUSCRIPTA MATHEMATICA, 2006, 120 (02) :193-209
[4]   Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian [J].
Huang, Guangyue ;
Li, Zhi .
ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (01) :123-134
[5]   Hamilton's gradient estimates of porous medium and fast diffusion equations [J].
Huang, Guangyue ;
Ma, Bingqing .
GEOMETRIAE DEDICATA, 2017, 188 (01) :1-16
[6]   Gradient estimates and Liouville type theorems for a nonlinear elliptic equation [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2015, 105 (05) :491-499
[7]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[8]   Yau's gradient estimates for a nonlinear elliptic equation [J].
Qian, Bin .
ARCHIV DER MATHEMATIK, 2017, 108 (04) :427-435
[9]  
Schoen R., 1994, C P LECT NOTES GEOME, VI
[10]   Gradient Estimates for the Equation Δu + cu-α=0 on Riemannian Manifolds [J].
Yang, Yun Yan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (06) :1177-1182