Irisin mediates beiging of adipose-derived mesenchymal stem cells through binding to TRPC3

被引:6
|
作者
Xue, Chunling [1 ]
Li, Xuechun [1 ]
Ba, Li [1 ]
Shen, Yamei [1 ]
Sun, Zhao [2 ]
Gu, Junjie [2 ]
Yang, Ying [2 ]
Han, Qin [1 ]
Zhao, Robert Chunhua [1 ]
机构
[1] Chinese Acad Med Sci, Ctr Excellence Tissue Engn, Peking Union Med Coll Hosp,Beijing Key Lab BZ0381, Peking Union Med Coll,Inst Basic Med Sci,Sch Basi, Beijing, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Oncol, 1 Shuaifuyuan Hutong, Beijing 100730, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesenchymal stem cells; Beiging; IRISIN; TRPC3; Calcium influx; Energy metabolism; WHITE FAT; ADIPOCYTE DIFFERENTIATION; STROMAL CELLS; CHANNELS; BROWN; TISSUE; MUSCLE; OBESITY; BONE; ASSOCIATION;
D O I
10.1186/s12915-022-01287-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Beiging of white fat plays an important role in energy metabolism. Beige adipocytes contribute to the regulation of body weight and body temperature through expenditure of chemical energy to produce heat, and they have therefore recently attracted considerable attention as potential targets for therapeutic approaches in metabolic disorders, including obesity. All adipocytes, including beige adipocytes, differentiate from mesenchymal stem cells (MSCs), which may provide an important path for clinical intervention; however, the mechanism of beiging of human adipose cell-derived MSCs is not fully understood. Here, we provide insights on the role of IRISIN, which is known to be secreted by skeletal muscle and promote beiging of white fat. Results: We established an IRISIN-induced mesenchymal stem cell beiging model and found that IRISIN protein interacts with the MSC membrane protein TRPC3. This interaction results in calcium influx and consequential activation of Erk and Akt signaling pathways, which causes phosphorylation of PPAR gamma. The phosphorylated PPAR gamma enters the nucleus and binds the UCP1 promoter region. Furthermore, the role of TRPC3 in the beiging of MSCs was largely abolished in Trpc3(-/-) mice. We additionally demonstrate that the calcium concentration in the brain of mice increases upon IRISIN stimulation, followed by an increase in the content of excitatory amino acids and norepinephrine, while Trpc3(-/-) mice exhibit the reverse effect. Conclusions: We found that TRPC3 is a key factor in irisin-induced beiging of MSCs, which may provide a new target pathway in addressing metabolic disorders. Our results additionally suggest that the interaction of irisin with TRPC3 may affect multiple tissues, including the brain.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Connexin expression decreases during adipogenic differentiation of human adipose-derived mesenchymal stem cells
    Mannino, Giuliana
    Vicario, Nunzio
    Parenti, Rosalba
    Giuffrida, Rosario
    Lo Furno, Debora
    MOLECULAR BIOLOGY REPORTS, 2020, 47 (12) : 9951 - 9958
  • [32] The Impacts of Lymph on the Adipogenesis of Adipose-Derived Stem Cells
    Hsiao, Hui-Yi
    Liu, Jia-Wei
    Pappalardo, Marco
    Cheng, Ming-Huei
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2023, 151 (05) : 1005 - 1015
  • [33] Priming human adipose-derived mesenchymal stem cells for corneal surface regeneration
    Nieto-Nicolau, Nuria
    Martinez-Conesa, Eva M.
    Fuentes-Julian, Sherezade
    Arnalich-Montiel, Francisco
    Garcia-Tunon, Ignacio
    De Miguel, Maria P.
    Casaroli-Marano, Ricardo P.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (11) : 5124 - 5137
  • [34] Adipose-derived mesenchymal stem cells promote the malignant phenotype of cervical cancer
    Castro-Oropeza, Rosario
    Vazquez-Santillan, Karla
    Diaz-Gastelum, Claudia
    Melendez-Zajgla, Jorge
    Zampedri, Cecilia
    Ferat-Osorio, Eduardo
    Rodriguez-Gonzalez, Arturo
    Arriaga-Pizano, Lourdes
    Maldonado, Vilma
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [35] Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells
    Fotia, Caterina
    Massa, Annamaria
    Boriani, Filippo
    Baldini, Nicola
    Granchi, Donatella
    CYTOTECHNOLOGY, 2015, 67 (06) : 1073 - 1084
  • [36] Molecular Physiognomies and Applications of Adipose-Derived Stem Cells
    Uzbas, F.
    May, I. D.
    Parisi, A. M.
    Thompson, S. K.
    Kaya, A.
    Perkins, A. D.
    Memili, E.
    STEM CELL REVIEWS AND REPORTS, 2015, 11 (02) : 298 - 308
  • [37] Biomaterials and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine: A Systematic Review
    Alonso-Goulart, Vivian
    Carvalho, Loyna Nobile
    Galante Marinho, Ana Leticia
    de Oliveira Souza, Bianca Lourenco
    Pinto Palis, Gabriela de Aquino
    Drumond Lage, Henrique Guerra
    de Lima, Isabela Lemos
    Guimaraes, Laura Duarte
    Peres, Lucas Correia
    Silveira, Marcia Marques
    Nogueira Lages Lopes, Gilberto Henrique
    Ferreira, Lorraine Braga
    Castro-Filice, Leticia de Souza
    MATERIALS, 2021, 14 (16)
  • [38] Human adipose-derived mesenchymal stem cells accelerate decellularized neobladder regeneration
    Moreno-Manzano, Victoria
    Mellado-Lopez, Maravillas
    Jose Morera-Esteve, Maria
    Alastrue-Agudo, Ana
    Bisbal-Velasco, Viviana
    Forteza-Vila, Jeronimo
    Serrano-Aroca, Angel
    David Vera-Donoso, Cesar
    REGENERATIVE BIOMATERIALS, 2020, 7 (02) : 161 - 169
  • [39] The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone
    Wang, Weiwei
    Kratz, Karl
    Behl, Marc
    Yan, Wan
    Liu, Yue
    Xu, Xun
    Baudis, Stefan
    Li, Zhengdong
    Kurtz, Andreas
    Lendlein, Andreas
    Ma, Nan
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2015, 61 (02) : 301 - 321
  • [40] Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration
    Han Chao
    Zhang Liang
    Song Lin
    Liu Yang
    Zou Wei
    Piao Hua
    Liu Jing
    CHINESE MEDICAL JOURNAL, 2014, 127 (02) : 329 - 337