Accurate Lipid Quantification of Tissue Homogenates Requires Suitable Sample Concentration, Solvent Composition, and Homogenization Procedure-A Case Study in Murine Liver

被引:15
作者
Hoering, Marcus [1 ]
Krautbauer, Sabrina [1 ]
Hiltl, Louisa [1 ]
Babl, Verena [1 ]
Sigruener, Alexander [1 ]
Burkhardt, Ralph [1 ]
Liebisch, Gerhard [1 ]
机构
[1] Univ Hosp Regensburg, Inst Clin Chem & Lab Med, Franz Josef Strauss Allee 11, D-93053 Regensburg, Germany
关键词
lipidomics; lipids; extraction; recovery; solvent; quantification; preanalytics; tissue homogenization; mass spectrometry; MASS-SPECTROMETRY; EXTRACTION;
D O I
10.3390/metabo11060365
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipidomics aim to quantify lipid species in all kinds of samples, including tissues. To subject a fixed amount of sample to various workflows, tissue homogenates were frequently prepared at defined concentrations in water or by addition of organic solvents. Here, we investigated this first step of tissue lipidomics by quantitative flow injection analysis coupled to Fourier-Transform mass spectrometry (FTMS). The influence of sample concentration, solvent composition, and homogenization procedure on the recovery of lipids was studied in murine liver. Liver homogenates were prepared either by grinding tissue in liquid nitrogen or by bead-based homogenization. Ground samples were dissolved at different concentrations in water, methanol, and water/methanol = 1/1 (v/v). Here, lipid recovery depends on solvent composition and sample concentration. The recovery of nonpolar lipid classes, including triglycerides and cholesteryl ester, was decreased in methanolic homogenates. In contrast, due to superior dispersion of precipitates, bead-based homogenization resulted in efficient lipid recovery independent of the solvent composition. However, lipid distribution within samples, i.e., lipid content of supernatant and pellet following centrifugation, was altered substantially by solvent composition. In conclusion, accurate lipid quantification of tissue homogenates requires evaluation of solvent composition, sample concentration, as well as the homogenization method to guarantee efficient lipid recovery. Due to a potential loss of lipids, removal of precipitates by centrifugation prior to lipid extraction should be avoided.
引用
收藏
页数:13
相关论文
共 25 条
[1]   Advances in Mass Spectrometry for Lipidomics [J].
Blanksby, Stephen J. ;
Mitchell, Todd W. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 3, 2010, 3 :433-465
[2]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[3]  
Dubacq S., 2016, NAT METHODS, V13, pi, DOI [10.1038/nmeth.f.394, DOI 10.1038/NMETH.F.394]
[4]   Hepatic lipid profile in mice fed a choline-deficient, low-methionine diet resembles human non-alcoholic fatty liver disease [J].
Haberl, Elisabeth M. ;
Pohl, Rebekka ;
Rein-Fischboeck, Lisa ;
Hoering, Marcus ;
Krautbauer, Sabrina ;
Liebisch, Gerhard ;
Buechler, Christa .
LIPIDS IN HEALTH AND DISEASE, 2020, 19 (01)
[5]   Lipid Zonation and Phospholipid Remodeling in Nonalcoholic Fatty Liver Disease [J].
Hall, Zoe ;
Bond, Nicholas J. ;
Ashmore, Tom ;
Sanders, Francis ;
Ament, Zsuzsanna ;
Wang, Xinzhu ;
Murray, Andrew J. ;
Bellafante, Elena ;
Virtue, Sam ;
Vidal-Puig, Antonio ;
Allison, Michael ;
Davies, Susan E. ;
Koulman, Albert ;
Vacca, Michele ;
Griffin, Julian L. .
HEPATOLOGY, 2017, 65 (04) :1165-1180
[6]   Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses [J].
Han, Xianlin ;
Yang, Kui ;
Gross, Richard W. .
MASS SPECTROMETRY REVIEWS, 2012, 31 (01) :134-178
[7]   Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry [J].
Hoering, Marcus ;
Ejsing, Christer S. ;
Krautbauer, Sabrina ;
Ertl, Verena M. ;
Burkhardt, Ralph ;
Liebisch, Gerhard .
JOURNAL OF LIPID RESEARCH, 2021, 62
[8]   Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors [J].
Hoering, Marcus ;
Ejsing, Christer S. ;
Hermansson, Martin ;
Liebisch, Gerhard .
ANALYTICAL CHEMISTRY, 2019, 91 (05) :3459-3466
[9]   Lipidomic Analysis [J].
Holcapek, Michal ;
Liebisch, Gerhard ;
Ekroos, Kim .
ANALYTICAL CHEMISTRY, 2018, 90 (07) :4249-4257
[10]  
Kirkwood Jay S, 2013, Curr Protoc Toxicol, VChapter 4, DOI 10.1002/0471140856.tx0439s56