Absence of Localization of Fourier-Laplace Series

被引:0
|
作者
bin Rasedee, Ahmad Fadly Nurullah [1 ,2 ]
Rakhimov, Abdumalik [2 ]
Ahmedov, Anvarjon A. [3 ]
Ishak, Norizarina [4 ]
Hamzah, Siti Raihana [4 ]
机构
[1] Univ Sains Islam Malaysia, Fac Econ & Muamalat, Nilai, Malaysia
[2] Int Islamic Univ Malaysia, Kulliyyah Engn, Dept Sci, Kuala Lumpur, Selangor, Malaysia
[3] Univ Malaysia Pahang, Fac Ind Sci & Technol, Gambang, Malaysia
[4] Univ Sains Islam Malaysia, Fac Sci & Technol, Nilai, Malaysia
来源
4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY | 2017年 / 1830卷
关键词
UNIFORM-CONVERGENCE; EXPANSIONS;
D O I
10.1063/1.4980983
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates a function f (x), constructed from the Nikol'skii class in S-2. The estimation obtained will show that the Riesz mean of the spectral expansions is unable to be strengthened due to absence of localization caused by a singualrity at a definite point f (x), on the sphere.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Summation by Riesz Means of the Fourier-Laplace Series
    bin Rasedee, Ahmad Fadly Nurullah
    Rakhimov, Abdumalik
    Akhmedov, Anvarjon
    FILOMAT, 2018, 32 (03) : 837 - 846
  • [2] On the Localization of the Riesz Means of Multiple Fourier Series of Distributions
    Rakhimov, A. A.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [3] Convergence of mock Fourier series
    Robert S. Strichartz
    Journal d’Analyse Mathématique, 2006, 99 : 333 - 353
  • [4] On generalized localization of Fourier inversion for distributions
    Ashurov, Rayshan
    Butaev, Almaz
    TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA, 2016, 672 : 33 - 50
  • [5] RAMANUJAN - FOURIER SERIES AND A THEOREM OF INGHAM
    Gadiyar, H. Gopalakrishna
    Murty, M. Ram
    Padma, R.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (05) : 691 - 706
  • [6] A BORDERLINE RANDOM FOURIER-SERIES
    TALAGRAND, M
    ANNALS OF PROBABILITY, 1995, 23 (02) : 776 - 785
  • [7] ON BEHAVIOR OF FOURIER COEFFICIENTS AND UNIFORM CONVERGENCE OF FOURIER SERIES IN THE HAAR SYSTEM
    Grigoryan, M. G.
    Kobelyan, A. Kh
    ADVANCES IN OPERATOR THEORY, 2018, 3 (04): : 781 - 793
  • [8] An uncertainty inequality for Fourier-Dunkl series
    Ciaurri, Oscar
    Varona, Juan L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) : 1499 - 1504
  • [9] Fourier Series of Gegenbauer-Sobolev Polynomials
    Ciaurri, Oscar
    Minguez, Judit
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [10] On the uniform convergence of Walsh-Fourier series
    Goginava, U
    ACTA MATHEMATICA HUNGARICA, 2001, 93 (1-2) : 59 - 70