First survey of HCNH+ in high-mass star-forming cloud cores

被引:11
|
作者
Fontani, F. [1 ,2 ]
Colzi, L. [1 ,3 ]
Redaelli, E. [2 ]
Sipilae, O. [2 ]
Caselli, P. [2 ]
机构
[1] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[2] Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany
[3] Ctr Astrobiol CSIC INTA, Ctra Ajalvir Km 4, Madrid 28850, Spain
关键词
ISM: molecules; stars: formation; radio lines: ISM; ISM: clouds; BEARING MOLECULES; FRACTIONATION; DEUTERATION; CHEMISTRY; NITROGEN; ORIGIN;
D O I
10.1051/0004-6361/202140655
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Most stars in the Galaxy, including the Sun, were born in high-mass star-forming regions. It is hence important to study the chemical processes in these regions to better understand the chemical heritage of the Solar System and most of the stellar systems in the Galaxy.Aims. The molecular ion HCNH+ is thought to be a crucial species in ion-neutral astrochemical reactions, but so far it has been detected only in a handful of star-forming regions, and hence its chemistry is poorly known.Methods. We observed with the IRAM 30 m Telescope 26 high-mass star-forming cores in different evolutionary stages in the J = 3-2 rotational transition of HCNH+.Results. We report the detection of HCNH+ in 16 out of 26 targets. This represents the largest sample of sources detected in this molecular ion to date. The fractional abundances of HCNH+ with respect to H-2, [HCNH+], are in the range 0.9-14 x 10(-11), and the highest values are found towards cold starless cores, for which [HCNH+] is of the order of 10(-10). The abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] are both <= 0.01 for all objects except for four starless cores, which are well above this threshold. These sources have the lowest gas temperatures and average H-2 volume density values in the sample. Based on this observational difference, we ran two chemical models, 'cold' and 'warm', which attempt to match the average physical properties of the cold(er) starless cores and the warm(er) targets as closely as possible. The reactions occurring in the latter case are investigated in this work for the first time. Our predictions indicate that in the warm model HCNH+ is mainly produced by reactions with HCN and HCO+, while in the cold model the main progenitor species of HCNH+ are HCN+ and HNC+.Conclusions. The observational results indicate, and the model predictions confirm, that the chemistry of HCNH+ is different in cold-early and warm-evolved cores, and the abundance ratios [HCNH+]/[HCN] and [HCNH+]/[HCO+] can be useful astrochemical tools to discriminate between different evolutionary phases in the process of star formation.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Fragmentation and kinematics in high-mass star formation CORE-extension targeting two very young high-mass star-forming regions
    Beuther, H.
    Gieser, C.
    Suri, S.
    Linz, H.
    Klaassen, P.
    Semenov, D.
    Winters, J. M.
    Henning, Th.
    Soler, J. D.
    Urquhart, J. S.
    Syed, J.
    Feng, S.
    Moeller, T.
    Beltran, M. T.
    Sanchez-Monge, A.
    Longmore, S. N.
    Peters, T.
    Ballesteros-Paredes, J.
    Schilke, P.
    Moscadelli, L.
    Palau, A.
    Cesaroni, R.
    Lumsden, S.
    Pudritz, R.
    Wyrowski, F.
    Kuiper, R.
    Ahmadi, A.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [42] NEATH - III. A molecular line survey of a simulated star-forming cloud
    Priestley, F. D.
    Clark, P. C.
    Glover, S. C. O.
    Ragan, S. E.
    Feher, O.
    Prole, L. R.
    Klessen, R. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (04) : 4408 - 4421
  • [43] A survey of large molecules of biological interest toward selected high-mass star-forming regions
    Remijan, A
    Shiao, YS
    Friedel, DN
    Meier, DS
    Snyder, LE
    ASTROPHYSICAL JOURNAL, 2004, 617 (01): : 384 - 398
  • [44] Inversely synthesizing the core mass function of high-mass star-forming regions from the canonical initial mass function
    Zhou, J. W.
    Kroupa, Pavel
    Dib, Sami
    ASTRONOMY & ASTROPHYSICS, 2025, 695
  • [45] Low-mass star-forming cores in the GF 9 filament
    Furuya, Ray S.
    Kitamura, Yoshimi
    Shinnaga, Hiroko
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2008, 60 (03) : 421 - 428
  • [46] VLBI study of maser kinematics in high-mass star-forming regions
    Sanna, A.
    Moscadelli, L.
    Cesaroni, R.
    Tarchi, A.
    Furuya, R. S.
    Goddi, C.
    ASTRONOMY & ASTROPHYSICS, 2010, 517
  • [47] SUBARCSECOND IMAGING OF THE HIGH-MASS STAR-FORMING REGION ONSALA 1
    Su, Yu-Nung
    Liu, Sheng-Yuan
    Lim, Jeremy
    ASTROPHYSICAL JOURNAL, 2009, 698 (02): : 1981 - 1988
  • [48] Interferometric Observations of Cyanopolyynes toward the G28.28-0.36 High-mass Star-forming Region
    Taniguchi, Kotomi
    Miyamoto, Yusuke
    Saito, Masao
    Sanhueza, Patricio
    Shimoikura, Tomomi
    Dobashi, Kazuhito
    Nakamura, Fumitaka
    Ozeki, Hiroyuki
    ASTROPHYSICAL JOURNAL, 2018, 866 (01):
  • [49] Class I and Class II methanol masers in high-mass star-forming regions
    Fontani, F.
    Cesaroni, R.
    Furuya, R. S.
    ASTRONOMY & ASTROPHYSICS, 2010, 517
  • [50] THE PHYSICAL PROPERTIES OF HIGH-MASS STAR-FORMING CLUMPS: A SYSTEMATIC COMPARISON OF MOLECULAR TRACERS
    Reiter, Megan
    Shirley, Yancy L.
    Wu, Jingwen
    Brogan, Crystal
    Wootten, Alwyn
    Tatematsu, Ken'ichi
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 195 (01):