An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking

被引:61
|
作者
Zhu, Wei [1 ]
Wang, Wei [1 ]
Yuan, Gannan [1 ]
机构
[1] Harbin Engn Univ, Coll Automat, 145 Nantong St, Harbin 150001, Peoples R China
来源
SENSORS | 2016年 / 16卷 / 06期
基金
中国博士后科学基金;
关键词
target tracking; cubature Kalman filter; unscented Kalman filter; interacting multiple models;
D O I
10.3390/s16060805
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Target Tracking Based on Mean Shift and Improved Kalman Filtering Algorithm
    Chu, Hongxia
    Wang, Kejun
    2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS ( ICAL 2009), VOLS 1-3, 2009, : 808 - 812
  • [22] Improved Cubature Kalman Filter for Target Tracking in Underwater Wireless Sensor Networks
    Luo, Junhai
    Chen, Yanping
    Wang, Zhiyan
    Wu, Man
    Yang, Yang
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 646 - 653
  • [23] Moving Target Tracking Based On Improved MeanShift And Kalman Filter Algorithm
    Yu, Long
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2486 - 2490
  • [24] Robust cubature Kalman filter target tracking algorithm based on genernalized M-estiamtion
    Wu Hao
    Chen Shu-Xin
    Yang Bin-Feng
    Chen Kun
    ACTA PHYSICA SINICA, 2015, 64 (21)
  • [25] Tracking a target using a cubature Kalman filter versus unbiased converted measurements
    Liu Zong-xiang
    Xie Wei-xin
    Wang Pin
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 2130 - 2133
  • [26] An Improved Target Tracking Algorithm Based on Extended Kalman Filter for UAV
    Li, Yibing
    Jiu, Mingyang
    Sun, Qian
    Wang, Yansong
    PROCEEDINGS OF THE 2018 IEEE 7TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2018, : 435 - 437
  • [27] Cubature rule aided interacting multiple model filter algorithm
    Wang, Shu-Lei, 1719, Northeast University (29): : 1719 - 1723
  • [28] Vehicle Target Tracking Based on Kalman Filtering Improved Compressed Sensing Algorithm
    Zhou Y.
    Hu J.
    Zhao Y.
    Zhu Z.
    Hao G.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (01): : 11 - 21
  • [29] Vehicle Target Tracking Algorithm Based on Improved Strong Tracking Unscented Kalman Filter
    Tian, Feng
    Wang, Siyuan
    Fu, Weibo
    Wei, Tianyu
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [30] Strong tracking UKF adaptive interacting multiple-model algorithm based on maneuvering hypersonic-target tracking
    Dai H.
    Fang J.
    Tang L.
    Wang X.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2018, 26 (03): : 338 - 345