Patch-based generative adversarial neural network models for head and neck MR-only planning

被引:72
|
作者
Klages, Peter [1 ]
Benslimane, Ilyes [1 ]
Riyahi, Sadegh [1 ]
Jiang, Jue [1 ]
Hunt, Margie [1 ]
Deasy, Joseph O. [1 ]
Veeraraghavan, Harini [1 ]
Tyagi, Neelam [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Med Phys, 1275 York Ave, New York, NY 10021 USA
关键词
conditional generative adversarial networks (cGAN); CycleGAN; generative adversarial networks (GAN); MR-Guided Radiotherapy; pix2pix; synthetic CT generation; SYNTHETIC CT; RADIOTHERAPY; DELINEATION; IMAGES;
D O I
10.1002/mp.13927
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To evaluate pix2pix and CycleGAN and to assess the effects of multiple combination strategies on accuracy for patch-based synthetic computed tomography (sCT) generation for magnetic resonance (MR)-only treatment planning in head and neck (HN) cancer patients. Materials and methods Twenty-three deformably registered pairs of CT and mDixon FFE MR datasets from HN cancer patients treated at our institution were retrospectively analyzed to evaluate patch-based sCT accuracy via the pix2pix and CycleGAN models. To test effects of overlapping sCT patches on estimations, we (a) trained the models for three orthogonal views to observe the effects of spatial context, (b) we increased effective set size by using per-epoch data augmentation, and (c) we evaluated the performance of three different approaches for combining overlapping Hounsfield unit (HU) estimations for varied patch overlap parameters. Twelve of twenty-three cases corresponded to a curated dataset previously used for atlas-based sCT generation and were used for training with leave-two-out cross-validation. Eight cases were used for independent testing and included previously unseen image features such as fused vertebrae, a small protruding bone, and tumors large enough to deform normal body contours. We analyzed the impact of MR image preprocessing including histogram standardization and intensity clipping on sCT generation accuracy. Effects of mDixon contrast (in-phase vs water) differences were tested with three additional cases. The sCT generation accuracy was evaluated using mean absolute error (MAE) and mean error (ME) in HU between the plan CT and sCT images. Dosimetric accuracy was evaluated for all clinically relevant structures in the independent testing set and digitally reconstructed radiographs (DRRs) were evaluated with respect to the plan CT images. Results The cross-validated MAEs for the whole-HN region using pix2pix and CycleGAN were 66.9 +/- 7.3 vs 82.3 +/- 6.4 HU, respectively. On the independent testing set with additional artifacts and previously unseen image features, whole-HN region MAEs were 94.0 +/- 10.6 and 102.9 +/- 14.7 HU for pix2pix and CycleGAN, respectively. For patients with different tissue contrast (water mDixon MR images), the MAEs increased to 122.1 +/- 6.3 and 132.8 +/- 5.5 HU for pix2pix and CycleGAN, respectively. Our results suggest that combining overlapping sCT estimations at each voxel reduced both MAE and ME compared to single-view non-overlapping patch results. Absolute percent mean/max dose errors were 2% or less for the PTV and all clinically relevant structures in our independent testing set, including structures with image artifacts. Quantitative DRR comparison between planning CTs and sCTs showed agreement of bony region positions to The dosimetric and MAE based accuracy, along with the similarity between DRRs from sCTs, indicate that pix2pix and CycleGAN are promising methods for MR-only treatment planning for HN cancer. Our methods investigated for overlapping patch-based HU estimations also indicate that combining transformation estimations of overlapping patches is a potential method to reduce generation errors while also providing a tool to potentially estimate the MR to CT aleatoric model transformation uncertainty. However, because of small patient sample sizes, further studies are required.
引用
收藏
页码:626 / 642
页数:17
相关论文
共 40 条
  • [1] Patch-Based Generative Adversarial Network Towards Retinal Vessel Segmentation
    Abbas, Waseem
    Shakeel, Muhammad Haroon
    Khurshid, Numan
    Taj, Murtaza
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 49 - 56
  • [2] CPGAN: Conditional patch-based generative adversarial network for retinal vessel segmentation
    Rammy, Sadaqat Ali
    Abbas, Waseem
    Hassan, Naqy-Ul
    Raza, Asif
    Zhang, Wu
    IET IMAGE PROCESSING, 2020, 14 (06) : 1081 - 1090
  • [3] Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy
    Fu, Jie
    Singhrao, Kamal
    Cao, Minsong
    Yu, Victoria
    Santhanam, Anand P.
    Yang, Yingli
    Guo, Minghao
    Raldow, Ann C.
    Ruan, Dan
    Lewis, John H.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (01):
  • [4] Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network
    Dinkla, Anna M.
    Florkow, Mateusz C.
    Maspero, Matteo
    Savenije, Mark H. F.
    Zijlstra, Frank
    Doornaert, Patricia A. H.
    van Stralen, Marijn
    Philippens, Marielle E. P.
    van den Berg, Cornelis A. T.
    Seevinck, Peter R.
    MEDICAL PHYSICS, 2019, 46 (09) : 4095 - 4104
  • [5] Brain and Head-and-Neck MRI in Immobilization Mask: A Practical Solution for MR-Only Radiotherapy
    Mandija, Stefano
    D'Agata, Federico
    Navest, Robin J. M.
    Sbrizzi, Alessandro
    Tijssen, Rob H. N.
    Philippens, Marielle E. P.
    Raaijmakers, Cornelis P. J.
    Seravalli, Enrica
    Verhoeff, Joost J. C.
    Lagendijk, Jan J. W.
    van den Berg, Cornelis A. T.
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [6] Improving Generative Adversarial Networks for Patch-Based Unpaired Image-to-Image Translation
    Boehland, Moritz
    Bruch, Roman
    Baeuerle, Simon
    Rettenberger, Luca
    Reischl, Markus
    IEEE ACCESS, 2023, 11 : 127895 - 127906
  • [7] Dosimetric evaluation of synthetic CT image generated using a neural network for MR-only brain radiotherapy
    Tang, Bin
    Wu, Fan
    Fu, Yuchuan
    Wang, Xianliang
    Wang, Pei
    Orlandini, Lucia Clara
    Li, Jie
    Hou, Qing
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (03): : 55 - 62
  • [8] Assessing multiple MRI sequences in deep learning-based synthetic CT generation for MR-only radiation therapy of head and neck cancers
    Antunes, Jacob
    Young, Tony
    Pittock, Dane
    Jacobs, Paul
    Nelson, Aaron
    Piper, Jon
    Deshpande, Shrikant
    RADIOTHERAPY AND ONCOLOGY, 2025, 205
  • [9] A feature invariant generative adversarial network for head and neck MRI/CT image synthesis
    Touati, Redha
    Le, William Trung
    Kadoury, Samuel
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (09)
  • [10] Towards MR-Only Radiotherapy Treatment Planning: Synthetic CT Generation Using Multi-view Deep Convolutional Neural Networks
    Zhao, Yu
    Liao, Shu
    Guo, Yimo
    Zhao, Liang
    Yan, Zhennan
    Hong, Sungmin
    Hermosillo, Gerardo
    Liu, Tianming
    Zhou, Xiang Sean
    Zhan, Yiqiang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 286 - 294