Observational study on the active layer freeze-thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau

被引:34
|
作者
Wang, Qingfeng [1 ]
Zhang, Tingjun [2 ]
Jin, Huijun [1 ]
Cao, Bin [2 ]
Peng, Xiaoqing [2 ]
Wang, Kang [2 ]
Li, Lili [2 ]
Guo, Hong [2 ]
Liu, Jia [2 ]
Cao, Lin [2 ]
机构
[1] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Frozen Soil Engn, 320 Donggang West Rd, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Coll Earth & Environm Sci, Minist Educ, Key Lab Western Chinas Environm Syst, 222 Tianshui South Rd, Lanzhou 730000, Gansu, Peoples R China
关键词
Alpine permafrost regions; Active layer; Seasonal freeze-thaw cycle; Local factors; Upper reaches of the Heihe River (URHHR); Qilian Mountains; PERMAFROST REGION; VEGETATION COVER; COASTAL-PLAIN; SOIL; ALASKA; TEMPERATURE; BASIN;
D O I
10.1016/j.quaint.2016.08.027
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Observational data collection on permafrost and active layer freeze thaw cycle is extremely limited in the upper reaches of the Heihe River (URHHR) in the Qilian Mountains of the north-eastern Qinghai Tibet Plateau. It acts as a bottleneck, restricting the hydrological effects of the changes in the permafrost and active layer in the Heihe River Basin. Using soil temperature, moisture and air temperature data collected from the four active layer observation sites (ALl, AL3, AL4 and AL7) established in the alpine permafrost regions in the URHHR, from 2013 to 2014, the region's active layer freeze thaw cycle and the soil hydrothermal dynamics were comparatively analysed. As the elevation increased from 3700 m a.s.l. to 4132 m a.s.l., the mean annual ground temperatures (MAGTs) of the active layer and the active layer thicknesses (ALTS) decreased, the onset date of soil freeze of the active layer occurred earlier and the soil freeze rate increased. However, the onset date of soil thaw and the thaw rate did not exhibit significant trends. Compared to the thaw process, the duration of the active layer freeze process was significantly shortened and its rate was significantly higher. The soil freeze from bottom to top did not occur earlier than that from top to bottom. Furthermore, as elevation increased, the proportion of the bottom -up freeze layer thickness increased. The soil moisture in the thaw layer continuously moved to the freeze front during the active layer's two-way freeze process, causing the thaw layer to be dewatered. The seasonal thaw process resulted in significant reduction of the soil water content in the thaw layer, accounting for the high ice content in the vicinity of the permafrost table. Controlled by elevation, the active layer's seasonal freeze thaw cycle was also affected by local factors, such as vegetation, slope, water (marsh water and super -permafrost water), lithology and water (ice) content. This study provides quantitative data that identify, simulate and predict the hydrological effects of the changes in the permafrost and active layer of the Heihe River Basin. (C) 2016 Elsevier Ltd and INQUA. All rights reserved.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 50 条
  • [31] Freeze-thaw erosion mechanism and preventive actions of highway subgrade soil in an alpine meadow on the Qinghai-Tibet Plateau
    Wu, Guanqing
    Xie, Yongli
    Wei, Jin
    Yue, Xiabing
    ENGINEERING FAILURE ANALYSIS, 2023, 143
  • [32] Effects of the freeze-thaw process on sources and pathways of subsurface flow in an alpine hillslope on the northeastern Qinghai-Tibet Plateau
    Zhang, Yangyang
    Li, Xiao-yan
    Hu, Guangrong
    Deng, Yuanhong
    Zhang, Xia
    Shi, Fangzhong
    Zuo, Fenglin
    JOURNAL OF HYDROLOGY, 2024, 636
  • [33] Lead and Chromium Immobilization Process Subjected to Different Freeze-Thaw Treatments in Soils of the Northeastern Qinghai-Tibet Plateau
    Li, Leiming
    Wu, Jun
    JOURNAL OF CHEMISTRY, 2021, 2021
  • [34] Water migration in subgrade soil under seasonal freeze-thaw cycles in an alpine meadow on the Qinghai-Tibet Plateau
    Guan-qing Wu
    Yong-li Xie
    Jin Wei
    Xia-bing Yue
    Journal of Mountain Science, 2022, 19 : 1767 - 1781
  • [35] Water migration in subgrade soil under seasonal freeze-thaw cycles in an alpine meadow on the Qinghai-Tibet Plateau
    Wu Guan-qing
    Xie Yong-li
    Wei Jin
    Yue Xia-bing
    JOURNAL OF MOUNTAIN SCIENCE, 2022, 19 (06) : 1767 - 1781
  • [36] Effect of freeze-thaw cycles on soil physicochemical properties and fractions of Pb and Cr in the northeastern Qinghai-Tibet Plateau
    Li, Leiming
    Wu, Jun
    Lu, Jian
    Min, Xiuyun
    GEOCHEMISTRY-EXPLORATION ENVIRONMENT ANALYSIS, 2021, 21 (03)
  • [37] Investigating soil properties and their effects on freeze-thaw processes in a thermokarst lake region of Qinghai-Tibet Plateau, China
    Ke, Xianmin
    Wang, Wei
    Niu, Fujun
    Gao, Zeyong
    ENGINEERING GEOLOGY, 2024, 342
  • [38] Characteristics of Freeze-Thaw Cycles in an Endorheic Basin on the Qinghai-Tibet Plateau Based on SBAS-InSAR Technology
    Zhou, Huayun
    Zhao, Lin
    Wang, Lingxiao
    Xing, Zanpin
    Zou, Defu
    Hu, Guojie
    Xie, Changwei
    Pang, Qiangqiang
    Liu, Guangyue
    Du, Erji
    Liu, Shibo
    Qiao, Yongping
    Zhao, Jianting
    Li, Zhibin
    Liu, Yadong
    REMOTE SENSING, 2022, 14 (13)
  • [39] Dynamics of the Interaction between Freeze-Thaw Process and Surface Energy Budget on the Permafrost Region of the Qinghai-Tibet Plateau
    Ma, Junjie
    Li, Ren
    Wu, Tonghua
    Liu, Hongchao
    Wu, Xiaodong
    Hu, Guojie
    Liu, Wenhao
    Wang, Shenning
    Xiao, Yao
    Tang, Shengfeng
    Shi, Jianzong
    Qiao, Yongping
    LAND, 2024, 13 (10)
  • [40] Water migration in subgrade soil under seasonal freeze-thaw cycles in an alpine meadow on the Qinghai-Tibet Plateau
    WU Guan-qing
    XIE Yong-li
    WEI Jin
    YUE Xia-bing
    JournalofMountainScience, 2022, 19 (06) : 1767 - 1782