On uniform approximation by some classical Bernstein-type operators

被引:22
作者
de la Cal, J [1 ]
Cárcamo, J [1 ]
机构
[1] Univ Basque Country, Fac Ciencias, Dept Matemat Aplicada & Estadist & Invest Operat, E-48080 Bilbao, Spain
关键词
Bernstein-type operators; Szasz operators; Szasz-Durrmeyer operators; gamma operators; Baskakov; operators; Meyer-Konig and Zeller operators; Cheney and Sharma operators; uniform convergence; rate of convergence; modulus of continuity; Poisson distribution; gamma distribution; negative binomial distribution; Poisson processes; gamma processes;
D O I
10.1016/S0022-247X(03)00048-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the functions for which certain classical families of operators of probabilistic type over noncompact intervals provide uniform approximation on the whole interval. The discussed examples include the Szasz operators, the Szasz-Durrmeyer operators, the gamma operators, the Baskakov operators, and the Meyer-Konig and Zeller operators. We show that some results of Totik remain valid for unbounded functions, at the same time that we give simple rates of convergence in terms of the usual modulus of continuity. We also show by a counterexample that the result for Meyer-Konig and Zeller operators does not extend to Cheney and Sharma operators. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:625 / 638
页数:14
相关论文
共 9 条
  • [1] BERNSTEIN-DURRMEYER OPERATORS
    ADELL, JA
    DELACAL, J
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 1 - 14
  • [2] On the Cheney and Sharma operator
    Adell, JA
    delaCal, J
    PerezPalomares, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 663 - 679
  • [3] Adell JA, 1996, CONSTR APPROX, V12, P489
  • [4] BERNSTEIN POWER SERIES
    CHENEY, EW
    SHARMA, A
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (02): : 241 - &
  • [5] APPROXIMATIONSEIGENSCHAFTEN DER GAMMAOPERATOREN
    LUPAS, A
    MULLER, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1967, 98 (03) : 208 - &
  • [6] MAZHAR SM, 1985, ACTA SCI MATH, V49, P257
  • [7] UNIFORM APPROXIMATION BY SZASZ-MIRAKJAN TYPE OPERATORS
    TOTIK, V
    [J]. ACTA MATHEMATICA HUNGARICA, 1983, 41 (3-4) : 291 - 307
  • [8] Totik V., 1983, PERIOD MATH, V14, P209, DOI [10.1007/BF01849019, DOI 10.1007/BF01849019]
  • [9] Totik V., 1984, ANAL MATH, V10, P163