Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems

被引:0
作者
Baker, N
Holst, M [1 ]
Wang, F
机构
[1] Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Math, Sci Computat Grp, La Jolla, CA 92093 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Poisson-Boltzmann equation; adaptive finite element methods; a posteriori error estimation; biomolecules; electrostatics;
D O I
10.1002/1096-987X(20001130)21:15<1343::AID-JCC2>3.3.CO;2-B
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We apply the adaptive multilevel finite element techniques (Holst, Baker, and Wang (21)) to the nonlinear Poisson-Boltzmann equation (PBE) in the context of biomolecules; Fast and accurate numerical solution of the PBE in this setting is usually difficult to accomplish due to presence of discontinuous coefficients, delta functions, three spatial dimensions, unbounded domains, and rapid (exponential) nonlinearity. However, these adaptive techniques have shown substantial improvement in solution time over conventional uniform-mesh finite difference methods. One important aspect of the adaptive multilevel finite element method is the robust a posteriori error estimators necessary to drive the adaptive refinement routines. This article discusses the choice of solvent accessibility for a posteriori error estimation of PBE solutions and the implementation of such routines in the "Adaptive Poisson-Boltzmann Solver" (APBS) software package based on the "Manifold Code" (MC)libraries. Results are shown for the application of this method to several biomolecular systems. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:1343 / 1352
页数:10
相关论文
共 45 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids
[2]   SOLUTIONS OF THE FULL POISSON-BOLTZMANN EQUATION WITH APPLICATION TO DIFFUSION-CONTROLLED REACTIONS [J].
ALLISON, SA ;
SINES, JJ ;
WIERZBICKI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (15) :5819-5823
[3]  
[Anonymous], 1985, MULTI GRID METHODS A
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[6]  
BANK R, 1998, PLTMG SOFTWARE PACKA, V5
[7]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[8]   Crystal structure of mouse acetylcholinesterase - A peripheral site-occluding loop in a tetrameric assembly [J].
Bourne, Y ;
Taylor, P ;
Bougis, PE ;
Marchot, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (05) :2963-2970
[9]  
Bowen RW, 1997, J COLLOID INTERF SCI, V187, P363
[10]  
BRIGGS JM, 1990, COMPUT PHYS, V6, P238