Solutions of the Gross-Pitaevskii Equation in Prolate Spheroidal Coordinates

被引:0
|
作者
Borisov, A. V. [1 ]
Shapovalov, A. V. [1 ,2 ]
机构
[1] Natl Res Tomsk State Univ, Tomsk, Russia
[2] Natl Res Tomsk Polytech Univ, Tomsk, Russia
关键词
Gross-Pitaevskii equation; exact solutions; prolate spheroidal coordinates; localized states; SOLITONS;
D O I
10.1007/s11182-015-0364-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the help of the method of similarity transformations, an approach is considered that makes it possible to find particular solutions of the Gross-Pitaevskii equation with a nonstationary coefficient of nonlinearity in prolate spheroidal coordinates. Two exact solutions are found in explicit form, having soliton properties, along with the corresponding potentials. The form of the solutions is illustrated by examples.
引用
收藏
页码:1201 / 1209
页数:9
相关论文
共 50 条
  • [1] Solutions of the Gross–Pitaevskii Equation in Prolate Spheroidal Coordinates
    A. V. Borisov
    A. V. Shapovalov
    Russian Physics Journal, 2015, 57 : 1201 - 1209
  • [2] Stability of the solutions of the Gross-Pitaevskii equation
    Jackson, AD
    Kavoulakis, GM
    Lundh, E
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [3] GENERALIZED SOLUTIONS TO THE GROSS-PITAEVSKII EQUATION
    ICHIYANAGI, M
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1487 - 1498
  • [4] Solutions of the Gross-Pitaevskii equation in two dimensions
    Lee, MD
    Morgan, SA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (13) : 3009 - 3017
  • [5] Formal analytical solutions for the Gross-Pitaevskii equation
    Trallero-Giner, C.
    Drake-Perez, Julio C.
    Lopez-Richard, V.
    Birman, Joseph L.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (18) : 2342 - 2352
  • [6] Similarity solutions and collapse in the attractive Gross-Pitaevskii equation
    Rybin, AV
    Varzugin, GG
    Lindberg, M
    Timonen, J
    Bullough, RK
    PHYSICAL REVIEW E, 2000, 62 (05): : 6224 - 6228
  • [7] Dynamic study for numerical solutions of the Gross-Pitaevskii equation
    Department of Science, Liaoning Technical University, Fuxin 123000, China
    不详
    Jisuan Wuli, 2006, 4 (483-488):
  • [8] The Gross-Pitaevskii equation: Backlund transformations and admitted solutions
    Carillo, Sandra
    Zullo, Federico
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 503 - 512
  • [9] Stationary solutions of the Gross-Pitaevskii equation with linear counterpart
    D'Agosta, R
    Malomed, BA
    Presilla, C
    PHYSICS LETTERS A, 2000, 275 (5-6) : 424 - 434
  • [10] Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation
    Masaki, Satoshi
    Miyazaki, Hayato
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (03) : 743 - 761