Gene editing in mouse zygotes using the CRISPR/Cas9 system

被引:37
作者
Wefers, Benedikt [1 ,2 ]
Bashir, Sanum [3 ,4 ]
Rossius, Jana [3 ]
Wurst, Wolfgang [1 ,2 ,5 ,6 ]
Kuehn, Ralf [3 ,4 ]
机构
[1] German Ctr Neurodegenerat Dis DZNE, Feodor Lynen Str 17, D-81377 Munich, Germany
[2] Helmholtz Zentrum Munchen, Inst Dev Genet, German Res Ctr Environm Hlth, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[3] Max Delbruck Ctr Mol Med, Robert Rossle Str 10, D-13125 Berlin, Germany
[4] Berlin Inst Hlth, Kapelle Ufer 2, D-10117 Berlin, Germany
[5] Tech Univ Munchen Weihenstephan, Chair Dev Genet, Helmholtz Zentrum Munchen, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[6] Munich Cluster Syst Neurol SyNergy, Feodor Lynen Str 17, D-81377 Munich, Germany
关键词
CRISPR; Cas9; Mouse; Zygotes; Gene editing; OFF-TARGET SITES; HUMAN-CELLS; CRISPR-CAS9; NUCLEASES; CAS9; MUTANT MICE; GUIDE RNAS; GENOME; GENERATION; SPECIFICITY; TOOL;
D O I
10.1016/j.ymeth.2017.02.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The generation of targeted mouse mutants is a key technology for biomedical research. Using the CRISPR/Cas9 system for induction of targeted double-strand breaks, gene editing can be performed in a single step directly in mouse zygotes. This article covers the design of knockout and knockin alleles, preparation of reagents, microinjection or electroporation of zygotes and the genotyping of pups derived from gene editing projects. In addition we include a section for the control of experimental settings by targeting the Rosa26 locus and PCR based genotyping of blastocysts. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
[1]   Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering [J].
Aouida, Mustapha ;
Eid, Ayman ;
Ali, Zahir ;
Cradick, Thomas ;
Lee, Ciaran ;
Deshmukh, Harshavardhan ;
Atef, Ahmed ;
AbuSamra, Dina ;
Gadhoum, Samah Zeineb ;
Merzaban, Jasmeen ;
Bao, Gang ;
Mahfouz, Magdy .
PLOS ONE, 2015, 10 (07)
[2]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[3]  
Chari R, 2015, NAT METHODS, V12, P823, DOI [10.1038/NMETH.3473, 10.1038/nmeth.3473]
[4]   Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes [J].
Chen, Sean ;
Lee, Benjamin ;
Lee, Angus Yiu-Fai ;
Modzelewski, Andrew J. ;
He, Lin .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (28) :14457-14467
[5]   Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Yongsub ;
Kweon, Jiyeon ;
Kim, Heon Seok ;
Bae, Sangsu ;
Kim, Jin-Soo .
GENOME RESEARCH, 2014, 24 (01) :132-141
[6]   Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes [J].
Chu, Van Trung ;
Weber, Timm ;
Graf, Robin ;
Sommermann, Thomas ;
Petsch, Kerstin ;
Sack, Ulrike ;
Volchkov, Pavel ;
Rajewsky, Klaus ;
Kuehn, Ralf .
BMC BIOTECHNOLOGY, 2016, 16
[7]   COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites [J].
Cradick, Thomas J. ;
Qiu, Peng ;
Lee, Ciaran M. ;
Fine, Eli J. ;
Bao, Gang .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2014, 3 :e214
[8]  
Davis KM, 2015, NAT CHEM BIOL, V11, P316, DOI [10.1038/nchembio.1793, 10.1038/NCHEMBIO.1793]
[9]   CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing [J].
Dehairs, Jonas ;
Talebi, Ali ;
Cherifi, Yacine ;
Swinnen, Johannes V. .
SCIENTIFIC REPORTS, 2016, 6
[10]   Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 [J].
Doench, John G. ;
Fusi, Nicolo ;
Sullender, Meagan ;
Hegde, Mudra ;
Vaimberg, Emma W. ;
Donovan, Katherine F. ;
Smith, Ian ;
Tothova, Zuzana ;
Wilen, Craig ;
Orchard, Robert ;
Virgin, Herbert W. ;
Listgarten, Jennifer ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2016, 34 (02) :184-+