Hollow Core Inhibited Coupled Antiresonant Terahertz Fiber: A Numerical and Experimental Study

被引:28
|
作者
Sultana, Jakeya [1 ]
Islam, Md Saiful [1 ,2 ]
Cordeiro, Cristiano M. B. [2 ,3 ]
Habib, Md Selim [4 ]
Dinovitser, Alex [1 ]
Kaushik, Mayank [5 ]
Ng, Brian W-H [1 ]
Ebendorff-Heidepriem, Heike [2 ]
Abbott, Derek [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Inst Photon & Adv Sensing IPAS, Adelaide, SA 5005, Australia
[3] Univ Estadual Campinas, Inst Phys, BR-13083859 Campinas, Brazil
[4] Florida Polytech Univ, Dept Elect & Comp Engn, Lakeland, FL 33805 USA
[5] Def Sci & Technol DST Grp, Edinburgh 5111, SA, Scotland
基金
巴西圣保罗研究基金会; 澳大利亚研究理事会;
关键词
Electron tubes; Propagation losses; Couplings; Sensors; Optical losses; Numerical models; Fabrication; 3-D printing; antiresonant fiber; optical fiber; THz-TDS; terahertz; PHOTONIC CRYSTAL FIBER; THZ WAVE-GUIDE; SINGLE-MODE; FANO RESONANCES; OPTICAL-FIBER; POROUS FIBER; LATTICE; TRANSMISSION; SPECTROSCOPY; PROPAGATION;
D O I
10.1109/TTHZ.2020.3031727
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a hollow core antiresonant photonic crystal fiber is analyzed for terahertz applications. A numerical analysis of the proposed fiber is first carried out to minimize coupling between the core and cladding modes. The modeling of the scaled-up and inhibited coupling fiber is carried out by means of a finite element method, which is then demonstrated using a Zeonex filament fiber, fabricated by fused deposition modeling of 3-D printing technology. The simulation is carried out to analyze both the transmission and possibility of refractometric sensing, whereas the experimental analysis is carried out using terahertz time-domain spectroscopy, and supports our numerical findings, illustrating how the proposed fibers can be used for low-loss transmission of terahertz waves. The simplicity of the proposed fiber structures facilitates fabrication for a number of different transmission and sensing applications in the terahertz range.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 50 条
  • [11] UV Guiding Hollow-Core Antiresonant Fiber
    Wang Mengling
    Gao Shoufei
    Wang Yingying
    Wang Pu
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (08):
  • [12] Hollow core Bragg fiber with antiresonant intermediate layer
    Zinin, Yurii A.
    Panov, Andrey V.
    Kulchin, Yurii N.
    ASIA-PACIFIC CONFERENCE ON FUNDAMENTAL PROBLEMS OF OPTO- AND MICROELECTRONICS, 2017, 10176
  • [13] Antiresonant Hollow-Core Inline Fiber Polarizer
    Zang, Jichao
    Goel, Charu
    Abu Hassan, Muhammad Rosdi
    Chang, Wonkeun
    Yoo, Seongwoo
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (16) : 5689 - 5697
  • [14] Low -loss Multimoded Antiresonant Hollow Core Fiber
    Goel, Charu
    Yoo, Seongwoo
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [15] 3D Printed Effective Single-Mode Terahertz Antiresonant Hollow Core Fiber
    Yang, Shuai
    Sheng, Xinzhi
    Zhao, Guozhong
    Lou, Shuqin
    Guo, Jiaoyan
    IEEE ACCESS, 2021, 9 : 29599 - 29608
  • [16] Terahertz antiresonant reflecting hollow-core waveguides for sensing applications
    You, Borwen
    Lu, Ja-Yu
    Chan, Chi-Yu
    Yu, Chin-Ping
    Chen, Hao-Zai
    Liu, Tze-An
    Peng, Jin-Long
    TERAHERTZ TECHNOLOGY AND APPLICATIONS IV, 2011, 7938
  • [17] Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications
    Vincetti, L.
    OPTICAL FIBER TECHNOLOGY, 2009, 15 (04) : 398 - 401
  • [18] Polarization Sensitive Multi-Hollow-Core Antiresonant Fiber
    Raynal, Guillaume
    Goel, Charu
    Yoo, Seongwoo
    Chang, Wonkeun
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2024, 30 (06)
  • [19] Antiresonant hollow-core fiber Bragg grating design
    Goel, Charu
    Wang, Yuxi
    Yoo, Seongwoo
    Chang, Wonkeun
    OPTICS LETTERS, 2023, 48 (20) : 5305 - 5308
  • [20] Hollow Core Antiresonant Fiber With Radially Asymmetric Nodeless Claddings
    Yu, Tao-Ying
    Liu, Xuesong
    Fan, Zhong-Wei
    IEEE PHOTONICS JOURNAL, 2018, 10 (01):