An AI classifier derived from 4D radiomics of dynamic contrast-enhanced breast MRI data: potential to avoid unnecessary breast biopsies

被引:22
作者
Poetsch, Nina [1 ]
Dietzel, Matthias [2 ]
Kapetas, Panagiotis [1 ]
Clauser, Paola [1 ]
Pinker, Katja [3 ]
Ellmann, Stephan [2 ]
Uder, Michael [2 ]
Helbich, Thomas [1 ]
Baltzer, Pascal A. T. [1 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Waehringerguertel 18-20, A-1090 Vienna, Austria
[2] Erlangen Univ Hosp, Inst Radiol, Maximilianspl 2, D-91054 Erlangen, Germany
[3] Mem Sloan Kettering Canc Ctr, Dept Radiol, Breast Imaging Serv, 1275 York Ave, New York, NY 10021 USA
关键词
Neural network; Principal component analysis; Breast biopsies; Breast MRI; Breast cancer;
D O I
10.1007/s00330-021-07787-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Due to its high sensitivity, DCE MRI of the breast (bMRI) is increasingly used for both screening and assessment purposes. The high number of detected lesions poses a significant logistic challenge in clinical practice. The aim was to evaluate a temporally and spatially resolved (4D) radiomics approach to distinguish benign from malignant enhancing breast lesions and thereby avoid unnecessary biopsies. Methods This retrospective study included consecutive patients with MRI-suspicious findings (BI-RADS 4/5). Two blinded readers analyzed DCE images using a commercially available software, automatically extracting BI-RADS curve types and pharmacokinetic enhancement features. After principal component analysis (PCA), a neural network-derived A.I. classifier to discriminate benign from malignant lesions was constructed and tested using a random split simple approach. The rate of avoidable biopsies was evaluated at exploratory cutoffs (C-1, 100%, and C-2, >= 95% sensitivity). Results Four hundred seventy (295 malignant) lesions in 329 female patients (mean age 55.1 years, range 18-85 years) were examined. Eighty-six DCE features were extracted based on automated volumetric lesion analysis. Five independent component features were extracted using PCA. The A.I. classifier achieved a significant (p < .001) accuracy to distinguish benign from malignant lesion within the test sample (AUC: 83.5%; 95% CI: 76.8-89.0%). Applying identified cutoffs on testing data not included in training dataset showed the potential to lower the number of unnecessary biopsies of benign lesions by 14.5% (C-1) and 36.2% (C-2). Conclusion The investigated automated 4D radiomics approach resulted in an accurate A.I. classifier able to distinguish between benign and malignant lesions. Its application could have avoided unnecessary biopsies.
引用
收藏
页码:5866 / 5876
页数:11
相关论文
共 45 条
[1]   Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors with Dynamic Contrast-Enhanced Magnetic Resonance Imaging [J].
Alvarez Illan, Ignacio ;
Ramirez, Javier ;
Gorriz, J. M. ;
Marino, Maria Adele ;
Avendano, Daly ;
Helbich, Thomas ;
Baltzer, Pascal ;
Pinker, Katja ;
Meyer-Baese, Anke .
CONTRAST MEDIA & MOLECULAR IMAGING, 2018,
[2]   Supplemental MRI Screening for Women with Extremely Dense Breast Tissue [J].
Bakker, Marije F. ;
de Lange, Stephanie V. ;
Pijnappel, Ruud M. ;
Mann, Ritse M. ;
Peeters, Petra H. M. ;
Monninkhof, Evelyn M. ;
Emaus, Marleen J. ;
Loo, Claudette E. ;
Bisschops, Robertus H. C. ;
Lobbes, Marc B. I. ;
de Jong, Matthijn D. F. ;
Duvivier, Katya M. ;
Veltman, Jeroen ;
Karssemeijer, Nico ;
de Koning, Harry J. ;
van Diest, Paul J. ;
Mali, Willem P. T. M. ;
van den Bosch, Maurice A. A. J. ;
Veldhuis, Wouter B. ;
van Gils, Carla H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (22) :2091-2102
[3]   Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using a simple sum score [J].
Baltzer, Anja ;
Dietzel, Matthias ;
Kaiser, Clemens G. ;
Baltzer, Pascal A. .
EUROPEAN RADIOLOGY, 2016, 26 (03) :884-891
[4]   Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group [J].
Baltzer, Pascal ;
Mann, Ritse M. ;
Iima, Mami ;
Sigmund, Eric E. ;
Clauser, Paola ;
Gilbert, Fiona J. ;
Martincich, Laura ;
Partridge, Savannah C. ;
Patterson, Andrew ;
Pinker, Katja ;
Thibault, Fabienne ;
Camps-Herrero, Julia ;
Le Bihan, Denis .
EUROPEAN RADIOLOGY, 2020, 30 (03) :1436-1450
[5]   A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography [J].
Baltzer, Pascal A. T. ;
Dietzel, Matthias ;
Kaiser, Werner A. .
EUROPEAN RADIOLOGY, 2013, 23 (08) :2051-2060
[6]   False-Positive Findings at Contrast-Enhanced Breast MRI: A BI-RADS Descriptor Study [J].
Baltzer, Pascal A. T. ;
Benndorf, Matthias ;
Dietzel, Matthias ;
Gajda, Mieczyslaw ;
Runnebaum, Ingo B. ;
Kaiser, Werner A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (06) :1658-1663
[7]   Clinical MR-Mammography: Are Computer-Assisted Methods Superior to Visual or Manual Measurements for Curve Type Analysis? A Systematic Approach [J].
Baltzer, Pascal Andreas Thomas ;
Freiberg, Christian ;
Beger, Sebastian ;
Vag, Tibor ;
Dietzel, Matthias ;
Herzog, Aimee B. ;
Gajda, Mieczyslaw ;
Camara, Oumar ;
Kaiser, Werner A. .
ACADEMIC RADIOLOGY, 2009, 16 (09) :1070-1076
[8]   Classification of hypervascularized lesions in CE MR imaging of the breast [J].
Baum, F ;
Fischer, U ;
Vosshenrich, R ;
Grabbe, E .
EUROPEAN RADIOLOGY, 2002, 12 (05) :1087-1092
[9]   A survey by the European Society of Breast Imaging on the utilisation of breast MRI in clinical practice [J].
Clauser, Paola ;
Mann, Ritse ;
Athanasiou, Alexandra ;
Prosch, Helmut ;
Pinker, Katja ;
Dietzel, Matthias ;
Helbich, Thomas H. ;
Fuchsjaeger, Michael ;
Camps-Herrero, Julia ;
Sardanelli, Francesco ;
Forrai, Gabor ;
Baltzer, Pascal A. T. .
EUROPEAN RADIOLOGY, 2018, 28 (05) :1909-1918
[10]   Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection Among Women With Dense Breasts Undergoing Screening [J].
Comstock, Christopher E. ;
Gatsonis, Constantine ;
Newstead, Gillian M. ;
Snyder, Bradley S. ;
Gareen, Ilana F. ;
Bergin, Jennifer T. ;
Rahbar, Habib ;
Sung, Janice S. ;
Jacobs, Christina ;
Harvey, Jennifer A. ;
Nicholson, Mary H. ;
Ward, Robert C. ;
Holt, Jacqueline ;
Prather, Andrew ;
Miller, Kathy D. ;
Schnall, Mitchell D. ;
Kuhl, Christiane K. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (08) :746-756