Modelling synchrotron self-Compton and Klein-Nishina effects in gamma-ray burst afterglows

被引:19
作者
Jacovich, Taylor E. [1 ,2 ,3 ]
Beniamini, Paz [1 ,2 ,4 ,5 ]
van der Horst, Alexander J. [1 ,2 ]
机构
[1] George Washington Univ, Dept Phys, 725 21st St NW, Washington, DC 20052 USA
[2] Astron Phys & Stat Inst Sci APSIS, 725 21st St NW, Washington, DC 20052 USA
[3] Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA
[4] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[5] Open Univ Israel, Astrophys Res Ctr, Open Univ ARCO, POB 808, IL-43537 Raanana, Israel
关键词
radiation mechanisms: non-thermal; relativistic processes; methods: numerical; gamma-ray burst: general; LIGHT CURVES; GW170817; EMISSION; DEEP; JET;
D O I
10.1093/mnras/stab911
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an implementation of a self-consistent way of modelling synchrotron self-Compton (SSC) effects in gamma-ray burst afterglows, with and without approximated Klein-Nishina suppressed scattering for the afterglow modelling code boxfit, which is currently based on pure synchrotron emission. We discuss the changes in spectral shape and evolution due to SSC effects, and comment on how these changes affect physical parameters derived from broad-band modelling. We show that SSC effects can have a profound impact on the shape of the X-ray light curve using simulations including these effects. This leads to data that cannot be simultaneously fit well in both the X-ray and radio bands when considering synchrotron-only fits, and an inability to recover the correct physical parameters, with some fitted parameters deviating orders of magnitude from the simulated input parameters. This may have a significant impact on the physical parameter distributions based on previous broad-band modelling efforts.
引用
收藏
页码:528 / 542
页数:15
相关论文
共 40 条
  • [21] On the magnetization of gamma-ray burst blast waves
    Lemoine, Martin
    Li, Zhuo
    Wang, Xiang-Yu
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (04) : 3009 - 3016
  • [22] McDowell A., 2020, PREPRINT ARXIV200510
  • [23] McKinney W., 2010, P 9 PYTHON SCI C, V445, P51, DOI DOI 10.25080/MAJORA-92BF1922-00A.SCIPY
  • [24] KLEIN-NISHINA EFFECTS ON OPTICALLY THIN SYNCHROTRON AND SYNCHROTRON SELF-COMPTON SPECTRUM
    Nakar, Ehud
    Ando, Shin'ichiro
    Sari, Re'em
    [J]. ASTROPHYSICAL JOURNAL, 2009, 703 (01) : 675 - 691
  • [25] Clustering of LAT light curves: a clue to the origin of high-energy emission in gamma-ray bursts
    Nava, L.
    Vianello, G.
    Omodei, N.
    Ghisellini, G.
    Ghirlanda, G.
    Celotti, A.
    Longo, F.
    Desiante, R.
    Duran, R. Barniol
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (04) : 3578 - 3585
  • [26] Properties of relativistic jets in gamma-ray burst afterglows
    Panaitescu, A
    Kumar, P
    [J]. ASTROPHYSICAL JOURNAL, 2002, 571 (02) : 779 - 789
  • [27] RELATIVISTIC FIREBALLS - ENERGY-CONVERSION AND TIME-SCALES
    REES, MJ
    MESZAROS, P
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1992, 258 (02) : P41 - P43
  • [28] The dynamics and light curves of beamed gamma-ray burst afterglows
    Rhoads, JE
    [J]. ASTROPHYSICAL JOURNAL, 1999, 525 (02) : 737 - 749
  • [29] Rybicki G. B., 1986, RAD PROCESSES ASTROP
  • [30] On the synchrotron self-compton emission from relativistic shocks and its implications for gamma-ray burst afterglows
    Sari, R
    Esin, AA
    [J]. ASTROPHYSICAL JOURNAL, 2001, 548 (02) : 787 - 799