SMALLEST EIGENVALUES FOR A RIGHT FOCAL BOUNDARY VALUE PROBLEM

被引:9
作者
Eloe, Paul [1 ]
Neugebauer, Jeffrey T. [2 ]
机构
[1] Univ Dayton, Dept Math, Dayton, OH 45469 USA
[2] Eastern Kentucky Univ, Dept Math & Stat, Richmond, KY 40475 USA
关键词
fractional boundary value problem; u(0)-positive operator; smallest eigenvalues; DIFFERENTIAL-EQUATIONS; ORDER; POINTS;
D O I
10.1515/fca-2016-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of smallest eigenvalues for the fractional linear boundary value problems D(0+)(alpha)u+lambda(1)p(t) u = 0 and Da(0+)(alpha)u+lambda(2)q(t) u = 0, 0 < t < 1, with each satisfying the right focal boundary conditions u(0) = u' (1) = 0. A comparison result is then obtained.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 16 条
[1]  
Chyan C. J., 1998, ELECT J DIFFERENTIAL, V1998, P1
[2]  
Davis J.M., 1999, Dynamic Systems and Applications, V8, P381
[3]  
Eloe P.W., 1992, Recent Trends in Ordinary Differential Equations, V1, P179
[4]  
Eloe P.W., 1989, APPL ANAL, V34, P25
[5]  
Eloe P. W., 2014, ELECTRON J DIFFER EQ, V2014, P1
[6]   Conjugate points for fractional differential equations [J].
Eloe, Paul ;
Neugebauer, Jeffrey T. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) :855-871
[7]   COMPARISON OF EIGENVALUES ASSOCIATED WITH LINEAR-DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER [J].
GENTRY, RD ;
TRAVIS, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 223 (OCT) :167-179
[8]  
Hankerson D., 1990, DIFFER INTEGRAL EQU, V3, P363
[9]   Eigenvalue comparison for fractional boundary value problems with the Caputo derivative [J].
Henderson, Johnny ;
Kosmatov, Nickolai .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) :872-880
[10]   Green's functions and eigenvalue comparisons for a focal problem on time scales [J].
Hoffacker, J .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (6-9) :1339-1368