A space-preserving data structure for isogeometric topology optimization in B-splines space

被引:6
作者
Yang, Aodi [1 ]
Wang, Shuting [1 ]
Luo, Nianmeng [1 ]
Xiong, Tifan [1 ]
Xie, Xianda [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
Isogeometric analysis; Topology optimization; Bezier extraction operator; Space-preserving data structure; LENGTH SCALE CONTROL; DESIGN; NURBS; DEPENDENCIES;
D O I
10.1007/s00158-022-03358-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we put forward a space-preserving data structure for isogeometric topology optimization in B-splines space, exploiting the Bezier extraction operator of B-splines. According to the space-preserving nature of Bernstein basis function space within an individual isogeometric analysis element, we derive the standard elemental stiffness matrix for all Bezier elements. With the aid of Bezier extraction matrix obtained from the knot insertion algorithm, all the elemental stiffness matrices of B-spline elements can be equivalently expressed by the aforementioned standard Bezier stiffness matrix. The data processing arrays are put forward for B-spline and Bezier isogeometric analysis meshes, which constitute the space-preserving data structure for isogeometric topology optimization. Three numerical examples are used to validate the effectiveness of the proposed space-preserving data structures for isogeometric topology optimization, where the maximum memory burden is decreased by four orders of magnitude, and the maximum computational efficiency is improved by two orders of magnitude, involved in storing and computing the essential data for the stiffness matrices of all B-spline elements, in comparison with the conventional space-varying data structure. Therefore, the proposed space-preserving data structure is a promising way of implementing isogeometric topology optimization method.
引用
收藏
页数:27
相关论文
共 48 条
  • [1] Giga-voxel computational morphogenesis for structural design
    Aage, Niels
    Andreassen, Erik
    Lazarov, Boyan S.
    Sigmund, Ole
    [J]. NATURE, 2017, 550 (7674) : 84 - +
  • [2] Structural optimization using sensitivity analysis and a level-set method
    Allaire, G
    Jouve, F
    Toader, AM
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) : 363 - 393
  • [3] Efficient topology optimization in MATLAB using 88 lines of code
    Andreassen, Erik
    Clausen, Anders
    Schevenels, Mattias
    Lazarov, Boyan S.
    Sigmund, Ole
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 43 (01) : 1 - 16
  • [4] Bendsoe M.P., 1989, STRUCT OPTIMIZATION, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
  • [5] GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD
    BENDSOE, MP
    KIKUCHI, N
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) : 197 - 224
  • [6] Isogeometric finite element data structures based on Bezier extraction of NURBS
    Borden, Michael J.
    Scott, Michael A.
    Evans, John A.
    Hughes, Thomas J. R.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) : 15 - 47
  • [7] Brampton Christopher, 2012, 12 AIAA AV TECHN INT, DOI [10.2514/6.2012-5484, DOI 10.2514/6.2012-5484]
  • [8] Adaptive refinement of hierarchical T-splines
    Chen, L.
    de Borst, R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 220 - 245
  • [9] Minimum length scale control in a NURBS-based SIMP method
    Costa, Giulio
    Montemurro, Marco
    Pailhes, Jerome
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 354 : 963 - 989
  • [10] Cottrell J., 2009, Isogeometric Analysis: Toward Integration of CAD and FEA, P1, DOI [10.1002/9780470749081, DOI 10.1002/9780470749081]