Functional theory for Bose-Einstein condensates

被引:9
作者
Liebert, Julia [1 ,2 ]
Schilling, Christian [1 ,2 ,3 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Univ Oxford, Wolfson Coll, Linton Rd, Oxford OX2 6UD, England
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
关键词
CONSERVING BOGOLIUBOV METHOD; GROSS-PITAEVSKII EQUATION; GROUND-STATE ENERGY; DENSITY; GAS; VALIDITY;
D O I
10.1103/PhysRevResearch.3.013282
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wave function by the simple one-particle reduced density matrix, and therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We initiate and establish this theory by deriving the respective universal functional F for homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of F reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Atomic quantum corrals for Bose-Einstein condensates [J].
Xiong, Hongwei ;
Wu, Biao .
PHYSICAL REVIEW A, 2010, 82 (05)
[32]   On the observation of nonclassical excitations in Bose-Einstein condensates [J].
Finke, Andreas ;
Jain, Piyush ;
Weinfurtner, Silke .
NEW JOURNAL OF PHYSICS, 2016, 18
[33]   On ground state of spinor Bose-Einstein condensates [J].
Cao, Daomin ;
Chern, I-Liang ;
Wei, Jun-Cheng .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (04) :427-445
[34]   Stabilization of repulsive trapless Bose-Einstein condensates [J].
Ramakrishnan, Tamil Thiruvalluvar ;
Subramaniyan, Sabari ;
Porsezian, K. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2018, 51 (16)
[35]   Pinning of hidden vortices in Bose-Einstein condensates [J].
Mithun, T. ;
Porsezian, K. ;
Dey, Bishwajyoti .
PHYSICAL REVIEW A, 2014, 89 (05)
[36]   Are Quasiparticles and Phonons Identical in Bose-Einstein Condensates? [J].
Tsutsui, Kazumasa ;
Kato, Yusuke ;
Kita, Takafumi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (12)
[37]   Collapsing dynamics of attractive Bose-Einstein condensates in random potentials [J].
Kamel, Madjda ;
Boudjemaa, Abdelaali .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2025, 39 (15)
[38]   Geometrically confined three-dimensional Bose-Einstein condensates [J].
Van Gorder, Robert A. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2025, 481 (2318)
[39]   Symmetry breaking in Bose-Einstein condensates confined by a funnel potential [J].
Miranda, Bruno M. ;
dos Santos, Mateus C. P. ;
Cardoso, Wesley B. .
PHYSICS LETTERS A, 2022, 452
[40]   Depletion in Bose-Einstein condensates using quantum field theory in curved space [J].
Balbinot, Roberto ;
Fagnocchi, Serena ;
Fabbri, Alessandro .
PHYSICAL REVIEW A, 2007, 75 (04)