Functional theory for Bose-Einstein condensates

被引:9
|
作者
Liebert, Julia [1 ,2 ]
Schilling, Christian [1 ,2 ,3 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Univ Oxford, Wolfson Coll, Linton Rd, Oxford OX2 6UD, England
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
关键词
CONSERVING BOGOLIUBOV METHOD; GROSS-PITAEVSKII EQUATION; GROUND-STATE ENERGY; DENSITY; GAS; VALIDITY;
D O I
10.1103/PhysRevResearch.3.013282
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wave function by the simple one-particle reduced density matrix, and therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We initiate and establish this theory by deriving the respective universal functional F for homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of F reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Beliaev theory of spinor Bose-Einstein condensates
    Nguyen Thanh Phuc
    Kawaguchi, Yuki
    Ueda, Masahito
    ANNALS OF PHYSICS, 2013, 328 : 158 - 219
  • [2] Perturbation theory for Bose-Einstein condensates on bounded space domains
    Van Gorder, Robert A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2243):
  • [3] Effective Action for Bose-Einstein Condensates
    Kita, Takafumi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (06)
  • [4] Finite-temperature density-functional theory of Bose-Einstein condensates
    Argaman, Nathan
    Band, Y. B.
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [5] Polymer Bose-Einstein condensates
    Castellanos, E.
    Chacon-Acosta, G.
    PHYSICS LETTERS B, 2013, 722 (1-3) : 119 - 122
  • [6] Time-varying Bose-Einstein condensates
    Van Gorder, Robert A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [7] Nonlinear Schrodinger Equations for Bose-Einstein Condensates
    Galati, Luigi
    Zheng, Shijun
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2013, 1562 : 50 - 64
  • [8] Collision of impurities with Bose-Einstein condensates
    Lingua, F.
    Lepori, L.
    Minardi, F.
    Penna, V.
    Salasnich, L.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [9] Physics of hollow Bose-Einstein condensates
    Padavic, Karmela
    Sun, Kuei
    Lannert, Courtney
    Vishveshwara, Smitha
    EPL, 2017, 120 (02)
  • [10] Bose-Einstein condensates in fast rotation
    Stock, S
    Battelier, B
    Bretin, V
    Hadzibabic, Z
    Dalibard, J
    LASER PHYSICS LETTERS, 2005, 2 (06) : 275 - 284