A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging

被引:103
作者
Yang, Yongfeng [1 ,2 ]
Bec, Julien [1 ]
Zhou, Jian [1 ]
Zhang, Mengxi [1 ]
Judenhofer, Martin S. [1 ]
Bai, Xiaowei [1 ]
Di, Kun [1 ]
Wu, Yibao [1 ]
Rodriguez, Mercedes [1 ,3 ]
Dokhale, Purushottam [4 ]
Shah, Kanai S. [4 ]
Farrell, Richard [4 ]
Qi, Jinyi [1 ]
Cherry, Simon R. [1 ]
机构
[1] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico
[4] Radiat Monitoring Devices Inc, Watertown, MA 02172 USA
关键词
positron emission tomography; small animal PET; high resolution; mouse; brain imaging; SYSTEM; NEMA; ACQUISITION; DETECTORS; DESIGN; DEPTH;
D O I
10.2967/jnumed.115.165886
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
We developed a prototype small-animal PET scanner based on depth-encoding detectors using dual-ended readout of small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. Methods: The scanner consists of 16 tapered dual-ended-readout detectors arranged in a 61-mm-diameter ring. The axial field of view (FOV) is 7 mm, and the transaxial FOV is 30 mm. The scintillator arrays consist of 14 x 14 lutetium oxyorthosilicate elements, with a crystal size of 0.43 x 0.43 mm at the front end and 0.80 x 0.43 mm at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8 x 8 mm and 13 x 8 mm position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear-instrumentation-module electronics and a custom-designed multiplexer are used for signal processing. Results: The detector performance was measured, and all but the crystals at the very edge could be clearly resolved. The average intrinsic spatial resolution in the axial direction was 0.61 mm. A depth-of-interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at the center of the FOV was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a FOV that can accommodate the entire mouse brain was approximately 0.6 mm using a 3-dimensional maximum-likelihood expectation maximization reconstruction. Images of a hot-rod micro phantom showed that rods with a diameter of as low as 0.5 mm could be resolved. The first in vivo studies were performed using F-18-fluoride and confirmed that a 0.6-mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with F-18-FDG were also performed. Conclusion: We developed a prototype PET scanner that can achieve a spatial resolution approaching the physical limits of a small-bore PET scanner set by positron range and detector interaction. We plan to add more detector rings to extend the axial FOV of the scanner and increase sensitivity.
引用
收藏
页码:1130 / 1135
页数:6
相关论文
共 31 条
[1]   Model-based normalization for iterative 3D PET image reconstruction [J].
Bai, B ;
Li, Q ;
Holdsworth, CH ;
Asma, E ;
Tai, YC ;
Chatziioannou, A ;
Leahy, RM .
PHYSICS IN MEDICINE AND BIOLOGY, 2002, 47 (15) :2773-2784
[2]   Performance Evaluation of the Inveon Dedicated PET Preclinical Tomograph Based on the NEMA NU-4 Standards [J].
Bao, Qinan ;
Newport, Danny ;
Chen, Mu ;
Stout, David B. ;
Chatziioannou, Arion F. .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 (03) :401-408
[3]  
Catana C, 2006, J NUCL MED, V47, P1968
[4]  
Cherry SR, 2006, J NUCL MED, V47, P1735
[5]  
Eriksson L, 2002, IEEE T NUCL SCI, V49, P2085, DOI 10.1109/TNS.2002.803784
[6]   DigiPET: sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators [J].
Espana, Samuel ;
Marcinkowski, Radoslaw ;
Keereman, Vincent ;
Vandenberghe, Stefaan ;
Van Holen, Roel .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (13) :3405-3420
[7]   NEMA NU 4-2008 Comparison of Preclinical PET Imaging Systems [J].
Goertzen, Andrew L. ;
Bao, Qinan ;
Bergeron, Melanie ;
Blankemeyer, Eric ;
Blinder, Stephan ;
Canadas, Mario ;
Chatziioannou, Arion F. ;
Dinelle, Katherine ;
Elhami, Esmat ;
Jans, Hans-Sonke ;
Lage, Eduardo ;
Lecomte, Roger ;
Sossi, Vesna ;
Surti, Suleman ;
Tai, Yuan-Chuan ;
Jose Vaquero, Juan ;
Vicente, Esther ;
Williams, Darin A. ;
Laforest, Richard .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (08) :1300-1309
[8]   GATE:: a simulation toolkit for PET and SPECT [J].
Jan, S ;
Santin, G ;
Strul, D ;
Staelens, S ;
Assié, K ;
Autret, D ;
Avner, S ;
Barbier, R ;
Bardiès, M ;
Bloomfield, PM ;
Brasse, D ;
Breton, V ;
Bruyndonckx, P ;
Buvat, I ;
Chatziioannou, AF ;
Choi, Y ;
Chung, YH ;
Comtat, C ;
Donnarieix, D ;
Ferrer, L ;
Glick, SJ ;
Groiselle, CJ ;
Guez, D ;
Honore, PF ;
Kerhoas-Cavata, S ;
Kirov, AS ;
Kohli, V ;
Koole, M ;
Krieguer, M ;
van der Laan, DJ ;
Lamare, F ;
Largeron, G ;
Lartizien, C ;
Lazaro, D ;
Maas, MC ;
Maigne, L ;
Mayet, F ;
Melot, F ;
Merheb, C ;
Pennacchio, E ;
Perez, J ;
Pietrzyk, U ;
Rannou, FR ;
Rey, M ;
Schaart, DR ;
Schmidtlein, CR ;
Simon, L ;
Song, TY ;
Vieira, JM ;
Visvikis, D .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (19) :4543-4561
[9]   A SYSTEM FOR THE 3D RECONSTRUCTION OF RETRACTED-SEPTA PET DATA USING THE EM ALGORITHM [J].
JOHNSON, CA ;
YAN, YC ;
CARSON, RE ;
MARTINO, RL ;
DAUBEWITHERSPOON, ME .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1995, 42 (04) :1223-1227
[10]   Evaluation of high performance data acquisition boards for simultaneous sampling of fast signals from PET detectors [J].
Judenhofer, MS ;
Pichler, BJ ;
Cherry, SR .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (01) :29-44