Designed Synthesis of CoO/CuO/rGO Ternary Nanocomposites as High-Performance Anodes for Lithium-Ion Batteries

被引:10
|
作者
Zhang, Hui [1 ]
Wang, Yi-Fan [1 ]
Liu, Wei-Liang [1 ]
Kong, Fan-Gong [2 ]
Ren, Man-Man [1 ]
Wang, Shou-Juan [2 ]
Wang, Xin-Qiang [3 ]
Duan, Xiu-Lan [3 ]
Peng, Dan [4 ]
机构
[1] Qilu Univ Technol, Sch Mat Sci & Engn, Shandong Acad Sci, Daxue Rd,Western Univ Sci Pk, Jinan 250353, Shandong, Peoples R China
[2] Qilu Univ Technol, Key Lab Pulp & Paper Sci & Technol, Shandong Acad Sci, Minist Educ Shandong Prov China, Jinan 250353, Shandong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[4] Shandong Key Lab Special Silicon Containing Mat, Jinan 250014, Shandong, Peoples R China
关键词
REVERSIBLE CAPACITY; NANOPARTICLES; COMPOSITES; FACILE; OXIDE; HYBRID; FOAM;
D O I
10.1007/s11837-018-2801-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transition-metal oxides are highly sought as alternative anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, the large volume variation of active materials during cycling leads to poor cycle life, which hinders commercial applications. In this work, we prepared cobalt oxide/copper oxide/reduced graphene oxide (CoO/CuO/rGO) ternary nanocomposites through a facile and cost-effective synthesis method. The products were endowed with a nanoscale distribution of CoO and CuO nanoparticles on the surface of rGO nanosheets. As anode materials for LIBs, the CoO/CuO/rGO nanocomposites delivered an initial discharge capacity of 1732.4 mAh g(-1 )and a stabilized capacity of 1364.6 mAh g(-1) at a current density of 200 mA g(-1) after 100 cycles. With increased current density to 1000 mA g(-1) and 2000 mA g(-1), the nanocomposites retained highly reversible capacities of 602.7 mAh g(-1) and 423.5 mAh g(-1) after 1000 cycles, respectively. These features revealed the potential applications of the CoO/CuO/rGO nanocomposites in anodes of LIBs.
引用
收藏
页码:1793 / 1799
页数:7
相关论文
共 50 条
  • [31] Supramolecular polymers as high-performance binders for silicon anodes in lithium-ion batteries
    Coskun, Ali
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [32] Natural Soft/Rigid Superlattices as Anodes for High-Performance Lithium-Ion Batteries
    Bai, Wei
    Gao, Jingyu
    Li, Kun
    Wang, Gongrui
    Zhou, Tengfei
    Li, Pengju
    Qin, Shengyong
    Zhang, Genqiang
    Guo, Zaiping
    Xiao, Chong
    Xie, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (40) : 17494 - 17498
  • [33] Sea Urchin-like Si@MnO2@rGO as Anodes for High-Performance Lithium-Ion Batteries
    Liu, Jiajun
    Wang, Meng
    Wang, Qi
    Zhao, Xishan
    Song, Yutong
    Zhao, Tianming
    Sun, Jing
    NANOMATERIALS, 2022, 12 (02)
  • [34] Mesoporous CuO Particles Threaded with CNTs for High-Performance Lithium-Ion Battery Anodes
    Ko, Sungwook
    Lee, Jung-In
    Yang, Hee Seung
    Park, Soojin
    Jeong, Unyong
    ADVANCED MATERIALS, 2012, 24 (32) : 4451 - 4456
  • [35] Hydrothermal synthesis of SnO2/MoO3-x/rGO ternary nanocomposites as a high-performance anode for lithium ion batteries
    Li, Ji-Hui
    Wei, Luo
    Cui, Xiaoke
    Han, Gaoxu
    Hou, Shiyu
    Shen, Wanci
    Kang, Feiyu
    Lv, Ruitao
    Ma, Liqiang
    Huang, Zheng-Hong
    ELECTROCHIMICA ACTA, 2024, 503
  • [36] Facile Synthesis of FeS@C Particles Toward High-Performance Anodes for Lithium-Ion Batteries
    Lin, Xuanni
    Yang, Zhuoyi
    Guo, Anru
    Liu, Dong
    NANOMATERIALS, 2019, 9 (10)
  • [37] Synthesis of Sn/MoS2/C composites as high-performance anodes for lithium-ion batteries
    Li, Qing-Yu
    Pan, Qi-Chang
    Yang, Guan-Hua
    Lin, Xi-Le
    Yan, Zhi-Xiong
    Wang, Hong-Qiang
    Huang, You-Guo
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (40) : 20375 - 20381
  • [38] Facile controlled synthesis of MnO2 nanostructures for high-performance anodes in lithium-ion batteries
    Liu, Lei
    Shen, Zhigang
    Zhang, Xiaojing
    Ma, Shulin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (02) : 1480 - 1486
  • [39] A facile synthesis of mesoporous graphene-tin composites as high-performance anodes for lithium-ion batteries
    Yue, Wenbo
    Yang, Sheng
    Liu, Yunling
    Yang, Xiaojing
    MATERIALS RESEARCH BULLETIN, 2013, 48 (04) : 1575 - 1580
  • [40] Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries
    Kim, Hyeongi
    Quoc Hai Nguyen
    Kim, Il Tae
    Hur, Jaehyun
    APPLIED SURFACE SCIENCE, 2019, 481 : 1196 - 1205