Designed Synthesis of CoO/CuO/rGO Ternary Nanocomposites as High-Performance Anodes for Lithium-Ion Batteries

被引:10
作者
Zhang, Hui [1 ]
Wang, Yi-Fan [1 ]
Liu, Wei-Liang [1 ]
Kong, Fan-Gong [2 ]
Ren, Man-Man [1 ]
Wang, Shou-Juan [2 ]
Wang, Xin-Qiang [3 ]
Duan, Xiu-Lan [3 ]
Peng, Dan [4 ]
机构
[1] Qilu Univ Technol, Sch Mat Sci & Engn, Shandong Acad Sci, Daxue Rd,Western Univ Sci Pk, Jinan 250353, Shandong, Peoples R China
[2] Qilu Univ Technol, Key Lab Pulp & Paper Sci & Technol, Shandong Acad Sci, Minist Educ Shandong Prov China, Jinan 250353, Shandong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[4] Shandong Key Lab Special Silicon Containing Mat, Jinan 250014, Shandong, Peoples R China
关键词
REVERSIBLE CAPACITY; NANOPARTICLES; COMPOSITES; FACILE; OXIDE; HYBRID; FOAM;
D O I
10.1007/s11837-018-2801-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transition-metal oxides are highly sought as alternative anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, the large volume variation of active materials during cycling leads to poor cycle life, which hinders commercial applications. In this work, we prepared cobalt oxide/copper oxide/reduced graphene oxide (CoO/CuO/rGO) ternary nanocomposites through a facile and cost-effective synthesis method. The products were endowed with a nanoscale distribution of CoO and CuO nanoparticles on the surface of rGO nanosheets. As anode materials for LIBs, the CoO/CuO/rGO nanocomposites delivered an initial discharge capacity of 1732.4 mAh g(-1 )and a stabilized capacity of 1364.6 mAh g(-1) at a current density of 200 mA g(-1) after 100 cycles. With increased current density to 1000 mA g(-1) and 2000 mA g(-1), the nanocomposites retained highly reversible capacities of 602.7 mAh g(-1) and 423.5 mAh g(-1) after 1000 cycles, respectively. These features revealed the potential applications of the CoO/CuO/rGO nanocomposites in anodes of LIBs.
引用
收藏
页码:1793 / 1799
页数:7
相关论文
共 50 条
  • [1] Co/CoO@N-C nanocomposites as high-performance anodes for lithium-ion batteries
    Sun, Ming
    Zhang, Hui
    Wang, Yi-Fan
    Liu, Wei-Liang
    Ren, Man-Man
    Kong, Fan-Gong
    Wang, Shou-Juan
    Wang, Xin-Qiang
    Duan, Xiu-Lan
    Ge, Shou-Zhe
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 771 (290-296) : 290 - 296
  • [2] CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes
    Wang, Qi
    Zhao, Jun
    Shan, Wanfei
    Xia, Xinbei
    Xing, Lili
    Xue, Xinyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 590 : 424 - 427
  • [3] CuO/rGO nanocomposite as an anode material for high-performance lithium-ion batteries
    Li, Yong
    Duan, Chao Nan
    Jiang, Zhou
    bin Zhou, Xue
    Wang, Ying
    MATERIALS RESEARCH EXPRESS, 2021, 8 (05)
  • [4] MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries
    Wang, Fengyue
    Ye, Yusheng
    Wang, Zhimeng
    Lu, Jiahao
    Zhang, Qi
    Zhou, Xinping
    Xiong, Qiming
    Qiu, Xiangyun
    Wei, Tao
    IONICS, 2021, 27 (10) : 4197 - 4204
  • [5] Rational combination of α-MnS/rGO nanocomposites for high-performance lithium-ion batteries
    Wang, Dandan
    Cai, Daoping
    Qu, Baihua
    Wang, Taihong
    CRYSTENGCOMM, 2016, 18 (33): : 6200 - 6204
  • [6] Fabrication of Hollow Co3O4 Nanospheres and Their Nanocomposites of CNT and rGO as High-Performance Anodes for Lithium-Ion Batteries
    Kesavan, Thangaian
    Gunawardhana, Nanda
    Senthil, Chenrayan
    Kundu, Manab
    Maduraiveeran, Govindhan
    Yoshio, Masaki
    Sasidharan, Manickam
    CHEMISTRYSELECT, 2018, 3 (20): : 5502 - 5511
  • [7] Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries
    Zhao, Xin
    Du, Yuxuan
    Jin, Lei
    Yang, Yang
    Wu, Shuilin
    Li, Weihan
    Yu, Yan
    Zhu, Yanwu
    Zhang, Qinghua
    SCIENTIFIC REPORTS, 2015, 5
  • [8] Intercalation of CoO in S-Doped Graphite as High-Performance Anodes for Lithium-Ion Batteries
    Ma, Xinlong
    Song, Xinyu
    Tang, Yushu
    Qi, Chuanlei
    Ning, Guoqing
    Gao, Jinsen
    Li, Yongfeng
    ENERGY TECHNOLOGY, 2017, 5 (12) : 2244 - 2252
  • [9] A facile synthesis of mesoporous graphene-tin composites as high-performance anodes for lithium-ion batteries
    Yue, Wenbo
    Yang, Sheng
    Liu, Yunling
    Yang, Xiaojing
    MATERIALS RESEARCH BULLETIN, 2013, 48 (04) : 1575 - 1580
  • [10] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678