Phase transitions, order by disorder, and finite entropy in the Ising antiferromagnetic bilayer honeycomb lattice

被引:0
|
作者
Gomez Albarracin, F. A. [1 ,2 ,5 ]
Rosales, H. D. [1 ,2 ,5 ]
Serra, Pablo [3 ,4 ]
机构
[1] Univ Nacl La Plata, Inst Fis La Plata, CONICET, Fac Ciencias Exactas, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
[2] UNLP, Dept Fis, FCE, Cc 16,Suc 4, RA-1900 La Plata, Buenos Aires, Argentina
[3] Univ Nacl Cordoba, Fac Matemat Astron Fis & Comp, Ciudad Univ,X5016LAE, Cordoba, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IFEG, Ciudad Univ,X5016LAE, Cordoba, Argentina
[5] UNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CONICET, RA-1900 La Plata, Buenos Aires, Argentina
关键词
STATE; BETHE; MODEL;
D O I
10.1103/PhysRevE.98.012139;012139
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an analytical and numerical study of the Ising model on a bilayer honeycomb lattice including interlayer frustration and coupling with an external magnetic field. First, we discuss the exact T = 0 phase diagram, where we find finite entropy phases for different magnetizations. Then, we study the magnetic properties of the system at finite temperature using complementary analytical techniques (Bethe lattice) and two types of Monte Carlo algorithms (Metropolis and Wang-Landau). We characterize the phase transitions and discuss the phase diagrams. The system presents a rich phenomenology: There are first- and second-order transitions, low-temperature phases with extensive degeneracy, and order-by-disorder state selection.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Residual entropy, bicriticality, and tricriticality in the frustrated Ising model on the honeycomb lattice
    Dias, P. F.
    Krindges, A.
    Morais, C. V.
    Zimmer, F. M.
    Mohylna, M.
    Zukovic, M.
    Schmidt, M.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 604
  • [22] Order-Disorder Transitions in the Ising Model
    Nefedev, Konstantin V.
    Andriuschenko, Peter D.
    2014 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGIES IN PHYSICAL AND ENGINEERING APPLICATIONS (ICCTPEA), 2014, : 126 - 127
  • [23] Topological phases and phase transitions on the honeycomb lattice
    Yuan Yang
    Xiaobing Li
    Dingyu Xing
    The European Physical Journal B, 2016, 89
  • [24] Topological phases and phase transitions on the honeycomb lattice
    Yang, Yuan
    Li, Xiaobing
    Xing, Dingyu
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (10):
  • [25] PHASE-TRANSITIONS IN AN ISING LATTICE WITH SUPEREXCHANGE
    KOSEVICH, AM
    SHKLOVSK.VA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1972, 62 (04): : 1585 - +
  • [26] CRITICAL FRONTIER OF THE ANTIFERROMAGNETIC ISING-MODEL IN A MAGNETIC-FIELD - THE HONEYCOMB LATTICE
    WU, FY
    WU, XN
    BLOTE, HWJ
    PHYSICAL REVIEW LETTERS, 1989, 62 (24) : 2773 - 2776
  • [27] COUPLED ORDER PARAMETERS, LATTICE DISORDER, AND MAGNETIC PHASE-TRANSITIONS
    HUBERMAN, BA
    STREIFER, W
    PHYSICAL REVIEW B, 1975, 12 (07): : 2741 - 2746
  • [28] PHASE-DIAGRAMS FOR THE HONEYCOMB ISING LATTICE WITH REENTRANT FERROMAGNETISM
    TOTH, L
    TOTHOVA, M
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1991, 167 (01): : K63 - K67
  • [29] Triangular antiferromagnetic order in the honeycomb layer lattice of ErCl3
    Krämer, KW
    Güdel, HU
    Fischer, P
    Fauth, F
    Fernandez-Diaz, MT
    Hauss, T
    EUROPEAN PHYSICAL JOURNAL B, 2000, 18 (01): : 39 - 47
  • [30] Phase transitions and thermodynamic properties of antiferromagnetic Ising model with next-nearest-neighbor interactions on the Kagome lattice
    Ramazanov, M. K.
    Murtazaev, A. K.
    Magomedov, M. A.
    Badiev, M. K.
    PHASE TRANSITIONS, 2018, 91 (06) : 610 - 618