Controlling the electronic structure of SnO2 nanowires by Mo-doping

被引:8
作者
Luo Zhi-Hua [1 ]
Tang Dong-Sheng [1 ]
Hai Kuo [1 ]
Yu Fang [1 ]
Chen Ya-Qi [1 ]
He Xiong-Wu [1 ]
Peng Yue-Hua [1 ]
Yuan Hua-Jun [1 ]
Yang Yi [1 ]
机构
[1] Hunan Normal Univ, Coll Phys & Informat Sci, Minist Educ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
doping; nanostructures; chemical vapor deposition processes; semiconducting materials; TIN OXIDE; THIN-FILM; NANOBELTS; OXIDATION; MOLYBDENUM; POWDERS; GROWTH;
D O I
10.1088/1674-1056/19/2/026102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mo-doped SnO2 (MTO) nanowires are synthesized by an in-situ doping chemical vapour deposition method. Raman scattering spectra indicate that the lattice symmetry of MTO nanowires lowers with the increase of Mo doping, which implies that Mo ions do enter into the lattice of SnO2 nanowire. Ultraviolet-visible diffuse reflectance spectra show that the band gap of MTO nanowires decreases with the increase of Mo concentration. The photoluminescence emission of SnO2 nanowires around 580 nm at room temperature can also be controlled accurately by Mo-doping, and it is extremely sensitive to Mo ions and will disappear when the atomic ratio reaches 0.46%.
引用
收藏
页数:5
相关论文
共 24 条
[1]   Growth mechanism and photoluminescence of the SnO2 nanotwists on thin film and the SnO2 short nanowires on nanorods [J].
Bing, Wang ;
Ping, Xu .
CHINESE PHYSICS B, 2009, 18 (01) :324-332
[2]   Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique [J].
Bouaine, A. ;
Brihi, N. ;
Schmerber, G. ;
Ulhaq-Bouillet, C. ;
Colis, S. ;
Dinia, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (07) :2924-2928
[3]   Hydrocarbon sensing mechanism of surface ruthenated tin oxide: An in situ IR, ESR, and adsorption kinetics study [J].
Chaudhary, VA ;
Mulla, IS ;
Vijayamohanan, K ;
Hegde, SG ;
Srinivas, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (13) :2565-2571
[4]   Preparation of mesoporous SnO2-SiO2 composite as electrodes for lithium batteries [J].
Chen, FL ;
Shi, Z ;
Liu, ML .
CHEMICAL COMMUNICATIONS, 2000, (21) :2095-2096
[5]   Large-scale, solution-phase growth of single-crystalline SnO2 nanorods [J].
Cheng, B ;
Russell, JM ;
Shi, WS ;
Zhang, L ;
Samulski, ET .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :5972-5973
[6]   TRANSPARENT CONDUCTORS - A STATUS REVIEW [J].
CHOPRA, KL ;
MAJOR, S ;
PANDYA, DK .
THIN SOLID FILMS, 1983, 102 (01) :1-46
[7]   UV light activation of tin oxide thin films for NO2 sensing at low temperatures [J].
Comini, E ;
Faglia, G ;
Sberveglieri, G .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 78 (1-3) :73-77
[8]   Tin oxide nanowires, nanoribbons, and nanotubes [J].
Dai, ZR ;
Gole, JL ;
Stout, JD ;
Wang, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (06) :1274-1279
[9]   Active sites for ethanol oxidation over SnO2-supported molybdenum oxides [J].
Gonçalves, F ;
Medeiros, PRS ;
Eon, JG ;
Appel, LG .
APPLIED CATALYSIS A-GENERAL, 2000, 193 (1-2) :195-202
[10]   Synthesis and luminescence properties of SnO2 nanoparticles [J].
Gu, F ;
Wang, SF ;
Song, CF ;
Lü, MK ;
Qi, YX ;
Zhou, GJ ;
Xu, D ;
Yuan, DR .
CHEMICAL PHYSICS LETTERS, 2003, 372 (3-4) :451-454