Rounding algorithms for a geometric embedding of minimum multiway cut

被引:60
作者
Karger, DR
Klein, P
Stein, C
Thorup, M
Young, NE
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Stata Ctr, Cambridge, MA 02139 USA
[2] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[3] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
[4] AT&T Labs Res, Shannon Lab, Florham Pk, NJ 07932 USA
[5] Univ Calif Riverside, Dept Comp Sci, Riverside, CA 92521 USA
关键词
multiway cut; approximation algorithm;
D O I
10.1287/moor.1030.0086
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given an undirected graph with edge costs and a subset of k greater than or equal to 3 nodes called terminals, a multiway, or k-way, cut is a subset of the edges whose removal disconnects each terminal from the others. The multiway cut problem is to find a minimum-cost multiway cut. This problem is Max-SNP hard. Recently, Calinescu et al. (Calinescu, G., H. Karloff, Y. Rabani. 2000. An improved approximation algorithm for MULTIWAY CUT. J. Comput. System Sci. 60(3) 564-574) gave a novel geometric relaxation of the problem and a rounding scheme that produced a (3/2 - l/k)-approximation algorithm. In this paper, we study their geometric relaxation. In particular, we study the worst-case ratio between the value of the relaxation and the value of the minimum multicut (the so-called integrality gap of the relaxation). For k = 3, we show the integrality gap is 12/11, giving tight upper and lower bounds. That is, we exhibit a family of graphs with integrality gaps arbitrarily close to 12/11 and give an algorithm that finds a cut of value 12/11 times the relaxation value. Our lower bound shows that this is the best possible performance guarantee for any algorithm based purely on the value of the relaxation. Our upper bound meets the lower bound and improves the factor of 7/6 shown by Calinescu et al. For all k, we show that there exists a rounding scheme with performance ratio equal to the integrality gap, and we give explicit constructions of polynomial-time rounding schemes that lead to improved upper bounds. For k = 4 and 5, our best upper bounds are based on computer-constructed rounding schemes (with computer proofs of correctness). For general k we give an algorithm with performance ratio 1.3438 - epsilon(k). Our results were discovered with the help of computational experiments that we also describe here.
引用
收藏
页码:436 / 461
页数:26
相关论文
共 9 条
[1]   An O(log k) approximate min-cut max-flow theorem and approximation algorithm [J].
Aumann, Y ;
Rabani, Y .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :291-301
[2]  
Billingsley P., 1986, PROBABILITY MEASURE
[3]   An improved approximation algorithm for multiway cut [J].
Calinescu, G ;
Karloff, H .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 60 (03) :564-574
[4]  
Cunningham WH, 1999, LECT NOTES COMPUT SC, V1610, P114
[5]   THE COMPLEXITY OF MULTITERMINAL CUTS [J].
DAHLHAUS, E ;
JOHNSON, DS ;
PAPADIMITRIOOU, CH ;
SEYMOUR, PD ;
YANNAKAKIS, M .
SIAM JOURNAL ON COMPUTING, 1994, 23 (04) :864-894
[6]   Divide-and-conquer approximation algorithms via spreading metrics [J].
Even, G ;
Naor, J ;
Rao, S ;
Schieber, B .
JOURNAL OF THE ACM, 2000, 47 (04) :585-616
[7]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[8]   Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms [J].
Leighton, T ;
Rao, S .
JOURNAL OF THE ACM, 1999, 46 (06) :787-832
[9]   GEOMETRY OF GRAPHS AND SOME OF ITS ALGORITHMIC APPLICATIONS [J].
LINIAL, N ;
LONDON, E ;
RABINOVICH, Y .
COMBINATORICA, 1995, 15 (02) :215-245