Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu

被引:76
作者
Mackenchery, Karoon [1 ,2 ]
Valisetty, Ramakrishna R. [3 ]
Namburu, Raju R. [3 ]
Stukowski, Alexander [4 ]
Rajendran, Arunachalam M. [5 ]
Dongare, Avinash M. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] US Army Res Lab, Computat & Informat Sci Directorate, Aberdeen Proving Ground, MD 21005 USA
[4] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany
[5] Univ Mississippi, Dept Mech Engn, 201-B Carrier Hall, University, MS 38677 USA
基金
美国国家科学基金会;
关键词
VOID GROWTH; DUCTILE FRACTURE; MAXIMUM STRENGTH; DYNAMIC FAILURE; NUCLEATION; BEHAVIOR; CRITERION; METALS; COPPER; MODEL;
D O I
10.1063/1.4939867
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dynamic evolution and interaction of defects under the conditions of shock loading in single crystal and nanocrystalline Cu are investigated using a series of large-scale molecular dynamics simulations for an impact velocity of 1 km/s. Four stages of defect evolution are identified during shock simulations that result in deformation and failure. These stages correspond to: the initial shock compression (I); the propagation of the compression wave (II); the propagation and interaction of the reflected tensile wave (III); and the nucleation, growth, and coalescence of voids (IV). The effect of the microstructure on the evolution of defect densities during these four stages is characterized and quantified for single crystal Cu as well as nanocrystalline Cu with an average grain size of 6 nm, 10 nm, 13 nm, 16 nm, 20 nm, and 30 nm. The evolution of twin densities during the shock propagation is observed to vary with the grain size of the system and affects the spall strength of the metal. The grain sizes of 6 nm and 16 nm are observed to have peak values for the twin densities and a spall strength that is comparable with the single crystal Cu. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 51 条
[1]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66
[2]   Contribution of non-octahedral slip to texture evolution of fcc polycrystals in simple shear [J].
Arzaghi, M. ;
Beausir, B. ;
Toth, L. S. .
ACTA MATERIALIA, 2009, 57 (08) :2440-2453
[3]   Grain-boundary interfaces and void interactions in porous aggregates [J].
Ashmawi, WM ;
Zikry, MA .
PHILOSOPHICAL MAGAZINE, 2003, 83 (31-34) :3917-3944
[4]   Single void morphological and grain-boundary effects on overall failure in FCC polycrystalline systems [J].
Ashmawi, WM ;
Zikry, MA .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 343 (1-2) :126-142
[5]   Energy barrier for homogeneous dislocation nucleation: Comparing atomistic and continuum models [J].
Aubry, Sylvie ;
Kang, Keonwook ;
Ryu, Seunghwa ;
Cai, Wei .
SCRIPTA MATERIALIA, 2011, 64 (11) :1043-1046
[6]   Ultrahigh strength in nanocrystalline materials under shock loading [J].
Bringa, EM ;
Caro, A ;
Wang, YM ;
Victoria, M ;
McNaney, JM ;
Remington, BA ;
Smith, RF ;
Torralva, BR ;
Van Swygenhoven, H .
SCIENCE, 2005, 309 (5742) :1838-1841
[7]   Atomistic shock Hugoniot simulation of single-crystal copper [J].
Bringa, EM ;
Cazamias, JU ;
Erhart, P ;
Stölken, J ;
Tanushev, N ;
Wirth, BD ;
Rudd, RE ;
Caturla, MJ .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) :3793-3799
[8]   DYNAMIC FAILURE OF SOLIDS [J].
CURRAN, DR ;
SEAMAN, L ;
SHOCKEY, DA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (5-6) :253-388
[9]   Spallation model for the high strain rates range [J].
Dekel, E ;
Eliezer, S ;
Henis, Z ;
Moshe, E ;
Ludmirsky, A ;
Goldberg, IB .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (09) :4851-4858
[10]   Atomic positional disorder in fcc metal nanocrystalline grain boundaries [J].
Derlet, PM ;
Van Swygenhoven, H .
PHYSICAL REVIEW B, 2003, 67 (01)