Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization

被引:13
|
作者
Zhang, Fenghua [1 ]
Yang, Zhijie [1 ,2 ]
Hao, Jinjie [1 ]
Zhao, Kaixuan [1 ]
Hua, Mingming [1 ,2 ]
Yang, Yanzhao [1 ]
Wei, Jingjing [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
ORGANIC FRAMEWORK; CRYSTALLINE; CATALYSIS; CONSTRUCTION; NANOCRYSTALS; REDUCTION; HYBRID;
D O I
10.1038/s42004-019-0222-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Precise organization of matter across multiple length scales is of particular interest because of its great potential with advanced functions and properties. Here we demonstrate a simple yet versatile strategy that enables the organization of hydrophobic nanoparticles within the covalent organic framework (COF) in an emulsion droplet. The interfacial polymerization takes place upon the addition of Lewis acid in the aqueous phase, which allows the formation of COF after a crystallization process. Meanwhile, the interaction between nanoparticles and COF is realized by the use of amine-aldehyde reactions in the nearest loci of the nanoparticles. Importantly, the competition between the nanoparticle self-assembly and interfacial polymerization allows control over the spatial distribution of nanoparticles within COF. As a general strategy, a wide variety of COF-wrapped nanoparticle assemblies can be synthesized and these hybridized nanomaterials could find applications in optoelectronics, heterogeneous catalysis and energy chemistry.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Supramolecular chemistry and self-assembly
    Menger, FM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) : 4818 - 4822
  • [42] Micro/Nano-Scaled Covalent Organic Frameworks: Polymerization, Crystallization and Self-Assembly
    Zhang, Zhen
    Zhang, Lu
    Wang, Xiangnan
    Wang, Tianping
    Cheng, Chong
    Liu, Xikui
    CHEMNANOMAT, 2022, 8 (01):
  • [43] Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
    Sahai, Nita
    Kaddour, Hussein
    Dalai, Punam
    Wang, Ziqiu
    Bass, Garrett
    Gao, Min
    SCIENTIFIC REPORTS, 2017, 7
  • [44] CdTe nanorods formation via nanoparticle self-assembly by thermal chemistry method
    Wang, X. N.
    Wang, J.
    Zhou, M. J.
    Wang, H.
    Xiao, X. D.
    Li, Q.
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (16-17) : 2310 - 2314
  • [45] Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
    Nita Sahai
    Hussein Kaddour
    Punam Dalai
    Ziqiu Wang
    Garrett Bass
    Min Gao
    Scientific Reports, 7
  • [46] Interfacial self-assembly of a bacterial hydrophobin
    Bromley, Keith M.
    Morris, Ryan J.
    Hobley, Laura
    Brandani, Giovanni
    Gillespie, Rachel M. C.
    McCluskey, Matthew
    Zachariae, Ulrich
    Marenduzzo, Davide
    Stanley-Wall, Nicola R.
    MacPhee, Cait. E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (17) : 5419 - 5424
  • [47] Nanoparticle self-assembly using π-π interactions
    Caputo, Gianvito
    Pinna, Nicola
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (07) : 2370 - 2378
  • [48] Plasmon coupling in a nanoparticle self-assembly
    Link, Stephan
    Chang, Wei-Shun
    Slaughter, Liam
    Khanal, Bishnu
    Manna, Pramit
    Zubarev, Eugene
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [49] NANOPARTICLE SELF-ASSEMBLY Enantioselective photoactivation
    Kahr, Bart
    Shtukenberg, Alexander G.
    NATURE MATERIALS, 2015, 14 (01) : 21 - 22
  • [50] Proteolytic actuation of nanoparticle self-assembly
    Harris, Todd I.
    Maltzahn, Geoffrey von
    Derfus, Austin M.
    Ruoslahti, Erkki
    Bhatia, Sangeeta N.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (19) : 3161 - 3165