Tripartite entanglement and quantum correlation

被引:3
作者
Guo, Xingyu [1 ,2 ]
Ma, Chen-Te [1 ,2 ,3 ,4 ]
机构
[1] South China Normal Univ, Inst Quantum Matter, Guangdong Prov Key Lab Nucl Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Southern Nucl Sci Comp Ctr, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[4] Univ Cape Town, Dept Math & Appl Math, Lab Quantum Grav & Strings, ZA-7700 Rondebosch, South Africa
基金
中国博士后科学基金;
关键词
Discrete Symmetries; Global Symmetries; Lattice Integrable Models; Topological States of Matter;
D O I
10.1007/JHEP05(2021)185
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We provide an analytical tripartite-study from the generalized R-matrix. It provides the upper bound of the maximum violation of Mermin's inequality. For a generic 2-qubit pure state, the concurrence or R-matrix characterizes the maximum violation of Bell's inequality. Therefore, people expect that the maximum violation should be proper to quantify Quantum Entanglement. The R-matrix gives the maximum violation of Bell's inequality. For a general 3-qubit state, we have five invariant entanglement quantities up to local unitary transformations. We show that the five invariant quantities describe the correlation in the generalized R-matrix. The violation of Mermin's inequality is not a proper diagnosis due to the non-monotonic behavior. We then classify 3-qubit quantum states. Each classification quantifies Quantum Entanglement by the total concurrence. In the end, we relate the experiment correlators to Quantum Entanglement.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Entanglement of magnon excitations in spin chains
    Jiaju Zhang
    M. A. Rajabpour
    Journal of High Energy Physics, 2022
  • [42] Entanglement entropy of topological orders with boundaries
    Chen, Chaoyi
    Hung, Ling-Yan
    Li, Yingcheng
    Wan, Yidun
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [43] Bell's inequality and entanglement in qubits
    Chang, Po-Yao
    Chu, Su-Kuan
    Ma, Chen-Te
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [44] Entanglement entropy with background gauge fields
    Kim, Bom Soo
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (08):
  • [45] Quantum codes, CFTs, and defects
    Buican, Matthew
    Dymarsky, Anatoly
    Radhakrishnan, Rajath
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (03)
  • [46] Quantum codes, CFTs, and defects
    Matthew Buican
    Anatoly Dymarsky
    Rajath Radhakrishnan
    Journal of High Energy Physics, 2023
  • [47] Kramers-Wannier self-duality and non-invertible translation symmetry in quantum chains: a wave-function perspective
    Hua-Chen Zhang
    Germán Sierra
    Journal of High Energy Physics, 2025 (5)
  • [48] Entanglement resolution of free Dirac fermions on a torus
    Foligno, Alessandro
    Murciano, Sara
    Calabrese, Pasquale
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (03)
  • [49] Dynamical edge modes and entanglement in Maxwell theory
    Ball, Adam
    Law, Y. T. Albert
    Wong, Gabriel
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (09):
  • [50] Entanglement entropy and negativity in the Ising model with defects
    David Rogerson
    Frank Pollmann
    Ananda Roy
    Journal of High Energy Physics, 2022