Tripartite entanglement and quantum correlation

被引:3
|
作者
Guo, Xingyu [1 ,2 ]
Ma, Chen-Te [1 ,2 ,3 ,4 ]
机构
[1] South China Normal Univ, Inst Quantum Matter, Guangdong Prov Key Lab Nucl Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Southern Nucl Sci Comp Ctr, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[4] Univ Cape Town, Dept Math & Appl Math, Lab Quantum Grav & Strings, ZA-7700 Rondebosch, South Africa
基金
中国博士后科学基金;
关键词
Discrete Symmetries; Global Symmetries; Lattice Integrable Models; Topological States of Matter;
D O I
10.1007/JHEP05(2021)185
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We provide an analytical tripartite-study from the generalized R-matrix. It provides the upper bound of the maximum violation of Mermin's inequality. For a generic 2-qubit pure state, the concurrence or R-matrix characterizes the maximum violation of Bell's inequality. Therefore, people expect that the maximum violation should be proper to quantify Quantum Entanglement. The R-matrix gives the maximum violation of Bell's inequality. For a general 3-qubit state, we have five invariant entanglement quantities up to local unitary transformations. We show that the five invariant quantities describe the correlation in the generalized R-matrix. The violation of Mermin's inequality is not a proper diagnosis due to the non-monotonic behavior. We then classify 3-qubit quantum states. Each classification quantifies Quantum Entanglement by the total concurrence. In the end, we relate the experiment correlators to Quantum Entanglement.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tripartite entanglement and quantum correlation
    Xingyu Guo
    Chen-Te Ma
    Journal of High Energy Physics, 2021
  • [2] Tripartite Entanglement in Quantum Memristors
    Kumar, S.
    Cardenas-Lopez, F. A.
    Hegade, N. N.
    Albarran-Arriagada, F.
    Solano, E.
    Barrios, G. Alvarado
    PHYSICAL REVIEW APPLIED, 2022, 18 (03)
  • [3] Tripartite entanglement and quantum relative entropy
    Galvao, EF
    Plenio, MB
    Virmani, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8809 - 8818
  • [4] Tripartite Quantum Entanglement with Squeezed Optomechanics
    Jiao, Ya-Feng
    Zuo, Yun-Lan
    Wang, Yan
    Lu, Wangjun
    Liao, Jie-Qiao
    Kuang, Le-Man
    Jing, Hui
    LASER & PHOTONICS REVIEWS, 2024, 18 (12)
  • [5] Monogamy and entanglement in tripartite quantum states
    Yu, Chang-shui
    Song, He-shan
    PHYSICS LETTERS A, 2009, 373 (07) : 727 - 730
  • [6] Entanglement monogamy of tripartite quantum states
    Yu, Chang-Shui
    Song, He-Shan
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [7] Entanglement Dynamics in a Model Tripartite Quantum System
    Laha, Pradip
    Sudarsan, B.
    Lakshmibala, S.
    Balakrishnan, V.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (09) : 4044 - 4059
  • [8] Genuine tripartite entanglement and quantum phase transition
    Yu Chang-Shui
    Song He-Shan
    Cui Hai-Tao
    CHINESE PHYSICS B, 2008, 17 (08) : 2795 - 2799
  • [9] Bound Entanglement for Bipartite and Tripartite Quantum Systems
    Zhao, Hui
    Guo, Sha
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (09) : 3238 - 3250
  • [10] Detecting Tripartite Steering via Quantum Entanglement
    Chen, Zhihua
    Fei, Shao-Ming
    ENTROPY, 2022, 24 (09)