Isolation, Characterization, and Stability of Discretely-Sized Nanolipoprotein Particles Assembled with Apolipophorin-III

被引:19
作者
Fischer, Nicholas O. [1 ]
Blanchette, Craig D. [1 ]
Segelke, Brent W. [1 ]
Corzett, Michele [1 ]
Chromy, Brett A. [1 ]
Kuhn, Edward A. [1 ]
Bench, Graham [1 ]
Hoeprich, Paul D. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
来源
PLOS ONE | 2010年 / 5卷 / 07期
关键词
APOLIPOPROTEIN-A-I; HIGH-DENSITY-LIPOPROTEINS; PHOSPHOLIPID-BILAYER NANODISCS; MEMBRANE-PROTEINS; MOLECULAR-DYNAMICS; LIPID-BILAYERS; AMPHOTERICIN-B; BOMBYX-MORI; BINDING; MORPHOLOGY;
D O I
10.1371/journal.pone.0011643
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Nanolipoprotein particles (NLPs) are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III) was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. Methodology: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to >25 nm) and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4 degrees C was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. Conclusions: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utility for biotechnological applications.
引用
收藏
页数:10
相关论文
共 59 条
[1]   Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Water-Soluble Nanolipoprotein Particles [J].
Baker, Sarah E. ;
Hopkins, Robert C. ;
Blanchette, Craig D. ;
Walsworth, Vicki L. ;
Sumbad, Rhoda ;
Fischer, Nicholas O. ;
Kuhn, Edward A. ;
Coleman, Matt ;
Chromy, Brett A. ;
Letant, Sonia E. ;
Hoeprich, Paul D. ;
Adams, Michael W. W. ;
Henderson, Paul T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (22) :7508-+
[2]   Conformational adaptation of apolipoprotein A-I to discretely sized phospholipid complexes [J].
Bhat, Shaila ;
Sorci-Thomas, Mary G. ;
Tuladhar, Rubina ;
Samuel, Michael P. ;
Thomas, Michael J. .
BIOCHEMISTRY, 2007, 46 (26) :7811-7821
[3]   Nanodisc-Incorporated Hemagglutinin Provides Protective Immunity against Influenza Virus Infection [J].
Bhattacharya, Palash ;
Grimme, Steve ;
Ganesh, Balaji ;
Gopisetty, Anupama ;
Sheng, Jian Rong ;
Martinez, Osvaldo ;
Jayarama, Shankar ;
Artinger, Michael ;
Meriggioli, Matthew ;
Prabhakar, Bellur S. .
JOURNAL OF VIROLOGY, 2010, 84 (01) :361-371
[4]   Quantifying size distributions of nanolipoprotein particles with single-particle analysis and molecular dynamic simulations [J].
Blanchette, Craig D. ;
Law, Richard ;
Benner, W. Henry ;
Pesavento, Joseph B. ;
Cappuccio, Jenny A. ;
Walsworth, Vicki ;
Kuhn, Edward A. ;
Corzett, Michele ;
Chromy, Brett A. ;
Segelke, Brent W. ;
Coleman, Matthew A. ;
Bench, Graham ;
Hoeprich, Paul D. ;
Sulchek, Todd A. .
JOURNAL OF LIPID RESEARCH, 2008, 49 (07) :1420-1430
[5]   Characterization and Purification of Polydisperse Reconstituted Lipoproteins and Nanolipoprotein Particles [J].
Blanchette, Craig D. ;
Segelke, Brent W. ;
Fischer, Nicholas ;
Corzett, Michele H. ;
Kuhn, Edward A. ;
Cappuccio, Jenny A. ;
Benner, William Henry ;
Coleman, Matthew A. ;
Chromy, Brett A. ;
Bench, Graham ;
Hoeprich, Paul D. ;
Sulchek, Todd A. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2009, 10 (07) :2958-2971
[6]   Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles [J].
Cappuccio, Jenny A. ;
Blanchette, Craig D. ;
Sulchek, Todd A. ;
Arroyo, Erin S. ;
Kralj, Joel M. ;
Hinz, Angela K. ;
Kuhn, Edward A. ;
Chromy, Brett A. ;
Segelke, Brent W. ;
Rothschild, Kenneth J. ;
Fletcher, Julia E. ;
Katzen, Federico ;
Peterson, Todd C. ;
Kudlicki, Wieslaw A. ;
Bench, Graham ;
Hoeprich, Paul D. ;
Coleman, Matthew A. .
MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (11) :2246-2253
[7]   Novel changes in discoidal high density lipoprotein morphology: A molecular dynamics study [J].
Catte, Andrea ;
Patterson, James C. ;
Jones, Martin K. ;
Jerome, W. Gray ;
Bashtovyy, Denys ;
Su, Zhengchang ;
Gu, Feifei ;
Chen, Jianguo ;
Aliste, Marcela P. ;
Harvey, Stephen C. ;
Li, Ling ;
Weinstein, Gilbert ;
Segrest, Jere P. .
BIOPHYSICAL JOURNAL, 2006, 90 (12) :4345-4360
[8]   The interplay between size, morphology, stability, and functionality of high-density lipoprotein subclasses [J].
Cavigiolio, Giorgio ;
Shao, Baohai ;
Geier, Ethan G. ;
Ren, Gang ;
Heinecke, Jay W. ;
Oda, Michael N. .
BIOCHEMISTRY, 2008, 47 (16) :4770-4779
[9]   Apolipoprotein AI tertiary structures determine stability and phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes [J].
Chen, Bin ;
Ren, Xuefeng ;
Neville, Tracey ;
Jerome, W. Gray ;
Hoyt, David W. ;
Sparks, Daniel ;
Ren, Gang ;
Wang, Jianjun .
PROTEIN SCIENCE, 2009, 18 (05) :921-935
[10]   Role of helices and loops in the ability of apolipophorin-III to interact with native lipoproteins and form discoidal lipoprotein complexes [J].
Chetty, PS ;
Arrese, EL ;
Rodriguez, V ;
Soulages, JL .
BIOCHEMISTRY, 2003, 42 (51) :15061-15067